Resposta:
Explicació:
Ens demanen que es trobin velocitat d'un objecte que es mou en una dimensió en un moment donat, donada la seva equació de temps de posició
Per tant, hem de trobar el document velocitat de l’objecte en funció del temps, per diferenciar l’equació de posició:
En el moment
(El terme
La posició d’un objecte que es mou al llarg d’una línia es dóna per p (t) = 2t - 2sin ((pi) / 8t) + 2. Quina és la velocitat de l'objecte a t = 12?
2.0 "m" / "s" Se'ns demana que trobem la velocitat x instantània v_x en un moment t = 12 donat l’equació de com varia la seva posició amb el temps. L’equació de la velocitat x instantània es pot derivar de l’equació de posició; la velocitat és la derivada de la posició respecte del temps: v_x = dx / dt La derivada d'una constant és 0, i la derivada de t ^ n és nt ^ (n-1). A més, la derivada del sin (at) és acos (ax). Utilitzant aquestes fórmules, la diferenciació de l’equació de posició és v_x (t) = 2 - pi
La posició d’un objecte que es mou al llarg d’una línia es dóna per p (t) = 2t - 2tsin ((pi) / 4t) + 2. Quina és la velocitat de l'objecte en t = 7?
"speed" = 8,94 "m / s". Es demana que trobem la velocitat d’un objecte amb una equació de posició coneguda (unidimensional). Per fer-ho, hem de trobar la velocitat de l'objecte en funció del temps, diferenciant l'equació de posició: v (t) = d / (dt) [2t - 2tsin (pi / 4t) + 2] = 2 - pi / 2tcos (pi / 4t) La velocitat en t = 7 "s" es troba per v (7) = 2 - pi / 2 (7) cos (pi / 4 (7)) = color (vermell) (- 8,94 color (vermell) ("m / s" (suposant que la posició sigui en metres i temps en segons) La velocitat de l'objecte és la magnitud (valor a
La posició d’un objecte que es mou al llarg d’una línia es dóna per p (t) = 2t ^ 3 - 2t ^ 2 +1. Quina és la velocitat de l'objecte a t = 4?
V (4) = 80 v (t) = d / (dt) p (t) v (t) = d / (dt) (2t ^ 3-2t ^ 2 + 1) v (t) = 6t ^ 2- 4t + 0 "si" "t = 4" -> "" v (4) = 6 * 4²-4 * 4 = 96-16 = 80 v (4) = 80