Resposta:
Vèrtexs:
Explicació:
Hola gent, utilitzem les lletres minúscules per als costats del triangle i les majúscules per als vèrtexs.
Aquests són, probablement, els costats:
Consell Pro: En general, és millor utilitzar el cosinus que sinus en un nombre de llocs del trig. Una raó és que un cosinus determina de forma única un angle de triangle
Negatiu, un angle obtús, però petit, només una mica més
Odio arruïnar una resposta exacta amb aproximacions, així que us deixaré la calculadora inversa del cosinus.
L’altitud d’un triangle augmenta a una velocitat d’1,5 cm / min mentre l’àrea del triangle augmenta a una velocitat de 5 cm2 / min. A quina velocitat canvia la base del triangle quan l’altitud és de 9 cm i la superfície és de 81 cm quadrats?
Aquest és un problema relacionat amb el tipus de canvi (de canvi). Les variables d’interès són a = altitud A = àrea i, atès que l’àrea d’un triangle és A = 1 / 2ba, necessitem b = base. Les taxes de canvi donades són en unitats per minut, de manera que la variable independent (invisible) és t = temps en minuts. Ens donen: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min I se'ns demana que trobem (db) / dt quan a = 9 cm i A = 81 cm ^ 2 A = 1 / 2ba, diferenciat respecte a t, obtenim: d / dt (A) = d / dt (1 / 2ba). Necessitarem la regla del producte a la dreta.
La relació d’un costat del Triangle ABC amb el costat corresponent del Triangle DEF similar és de 3: 5. Si el perímetre del triangle DEF és de 48 polzades, quin és el perímetre del triangle ABC?
"Perímetre de" triangle ABC = 28.8 Des del triangle ABC ~ triangle DEF llavors si ("costat de" ABC) / ("costat corresponent de" DEF) = 3/5 color (blanc) ("XXX") rArr ("perímetre de "ABC) / (" perímetre de "DEF) = 3/5 i ja que" perímetre de "DEF = 48 tenim color (blanc) (" XXX ") (" perímetre de "ABC) / 48 = 3/5 rArrcolor ( blanc) ("XXX") "perímetre de" ABC = (3xx48) /5=144/5=28.8
'L varia conjuntament com una arrel quadrada de b, i L = 72 quan a = 8 i b = 9. Trobeu L quan a = 1/2 i b = 36? Y varia conjuntament com el cub de x i l'arrel quadrada de w, i Y = 128 quan x = 2 i w = 16. Trobeu Y quan x = 1/2 i w = 64?
L = 9 "i" y = 4> "la declaració inicial és" Lpropasqrtb "per convertir a una equació multiplicar per k la constant de variació" rArrL = kasqrtb "per trobar k usa les condicions donades" L = 72 "quan "a = 8" i "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" equació és "color (vermell) (barra (ul (| color (blanc) ( 2/2) color (negre) (L = 3asqrtb) color (blanc) (2/2) |)) "" quan "a = 1/2" i "b = 36" L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 colors (blau) "---------------