Resposta:
Utilitzeu els fonaments de la rotació al voltant d’un eix fix. Recordeu utilitzar
Explicació:
El parell és igual a:
On?
El moment d’inèrcia:
L'acceleració angular:
Per tant:
Un objecte amb una massa de 8 kg viatja en un camí circular de radi de 12 m. Si la velocitat angular de l'objecte canvia de 15 Hz a 7 Hz en 6 s, quin parell es va aplicar a l'objecte?
Parell = -803,52 Newton.meter f_1 = 15 Hz f_2 = 7 Hz w_1 = 2 * 3.14 * 15 = 30 * 3.14 = 94.2 (rad) / s w_2 = 2 * 3,14 * 7 = 14 * 3,13 = 43,96 (rad) / sa = (w_2-w_1) / ta = (43,96-94,2) / 6 a = -8,37 m / s ^ 2 F = m * a F = -8 * 8,37 = -66,96 NM = F * r M = -66,96 * 12 = -803,52, Newton.meter
Un objecte amb una massa de 3 kg està viatjant en un camí circular amb un radi de 15 m. Si la velocitat angular de l'objecte canvia de 5 Hz a 3Hz en 5 s, quin torque es va aplicar a l'objecte?
L = -540pi alfa = L / I alfa ": acceleració angular" "L: parell" "I: moment d’inèrcia" alpha = (omega_2-omega_1) / (Delta t) alpha = (2 pi * 3-2 pi *) 5) / 5 alfa = - (4pi) / 5 I = m * r ^ 2 I = 3 * 15 ^ 2 I = 3 * 225 = 675 L = alfa * IL = -4pi / 5 * 675 L = -540pi
Un objecte amb una massa de 2 kg està viatjant en un camí circular amb un radi de 2 m. Si la velocitat angular de l’objecte canvia de 3 Hz a 9 Hz en 1 s, quin parell s’ha aplicat a l’objecte?
96pi Nm Comparant el moviment lineal i el moviment de rotació per comprendre Per al moviment lineal - Per a moviment de rotació, massa -> moment de la força inercial -> velocitat de parell -> acceleració de velocitat angular -> acceleració de forma angular So, F = ma -> -> tau = I alfa Aquí, alpha = (omega _2 -omega _1) / (Delta t) = (2pixxn_2-2pixxn1) / (Deltat) = (2pi) xx ((9-3)) / 1 s ^ (- 2) = 12pis ^ (- 2) i I = mr ^ 2 = 2 kg * 2 ^ 2 m ^ 2 = 8 kgm ^ 2 Llavors tau = 8 kgm ^ 2 * 12pis ^ (- 2) = 96pi Nm