Resposta:
(0, 5) intercepció y o qualsevol punt del gràfic següent
Explicació:
Primer, trobar el pendent amb dos punts utilitzant aquesta equació:
Etiqueta els teus parells ordenats.
(3, 11)
(-2, 1)
Connecteu les vostres variables.
Simplifica.
Com que dos negatius es divideixen per fer positiu, la vostra resposta serà:
Segona part
Ara, utilitzeu la fórmula de la inclinació puntual per esbrinar quina és la vostra equació en forma y = mx + b:
Connecteu les vostres variables.
Distribuïu i simplifiqueu.
Resol per a cada variable. Per solucionar l’equació de y = mx + b, afegiu 11 a tots dos costats per negar -11.
Ara, traça això en un gràfic:
gràfic {2x + 5 -10, 10, -5, 5}
Gregory va dibuixar un rectangle ABCD en un pla de coordenades. El punt A és a (0,0). El punt B es troba a (9,0). El punt C es troba a (9, -9). El punt D és a (0, -9). Troba la longitud del CD lateral?
CD lateral = 9 unitats Si ignorem les coordenades y (el segon valor de cada punt), és fàcil dir que, atès que el CD lateral comença a x = 9 i acaba en x = 0, el valor absolut és 9: | 0 - 9 | = 9 Recordeu que les solucions als valors absoluts són sempre positives Si no enteneu per què això és, també podeu utilitzar la fórmula de distància: P_ "1" (9, -9) i P_ "2" (0, -9 ) En la següent equació, P_ "1" és C i P_ "2" és D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^
En un tros de paper gràfic, dibuixa els punts següents: A (0, 0), B (5, 0) i C (2, 4). Aquestes coordenades seran els vèrtexs d’un triangle. Utilitzant la Fórmula del punt mig, quins són els punts mitjans del costat del triangle, els segments AB, BC i CA?
Color (blau) ((2,5,0), (3,5,2), (1,2) Podem trobar tots els punts mitjans abans de dibuixar qualsevol cosa. Tenim costats: AB, BC, CA Les coordenades del punt mig de un segment de línia està donat per: ((x_1 + x_2) / 2, (y_1 + y_2) / 2) Per a AB tenim: ((0 + 5) / 2, (0 + 0) / 2) => (5 /2,0)=>color (blau) ((2,5,0) Per a BC tenim: ((5 + 2) / 2, (0 + 4) / 2) => (7 / 2,2) => color (blau) ((3,5,2) Per a CA tenim: ((2 + 0) / 2, (4 + 0) / 2) => color (blau) ((1,2) Ara dibuixem tots els punts i construir el triangle:
El punt A es troba a (-2, -8) i el punt B és (-5, 3). Es gira el punt A (3pi) / 2 en sentit horari sobre l’origen. Quines són les noves coordenades del punt A i quant ha canviat la distància entre els punts A i B?
Deixeu coordenades polars inicials d’A, (r, theta) donada les coordenades cartesianes inicials d’A, (x_1 = -2, y_1 = -8). 2 rotació cap a les agulles del rellotge la nova coordenada d’A es converteix en x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 ) = - rsin (3pi / 2-theta) = rcostheta = -2 Distància inicial de A des de B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 distància final entre la nova posició de A ( 8, -2) i B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 So Difference = sqrt194-sqrt130 també consulteu l’enllaç http://socratic.org/questions/point-a