Resposta:
Explicació:
Tingues en compte que:
# x ^ 4 + 2 + x ^ (- 4) = (x ^ 2 + x ^ (- 2)) ^ 2 #
Probablement podeu omplir la resta:
#int (sqrt (x ^ 4 + 2 + x ^ (- 4)) / x ^ 3) dx = int (x ^ 2 + x ^ (- 2)) / x ^ 3 dx #
#color (blanc) (int (sqrt (x ^ 4 + 2 + x ^ (- 4)) / x ^ 3) dx) = int x ^ (- 1) + x ^ (- 5) dx #
#color (blanc) (int (sqrt (x ^ 4 + 2 + x ^ (- 4)) / x ^ 3) dx) = ln abs x-1 / 4x ^ (- 4) + C #
Integració fent servir substitució intsqrt (1 + x ^ 2) / x dx? Com soluciono aquesta pregunta, si us plau, ajuda'm?
Sqrt (1 + x ^ 2) -1 / 2ln (abs (sqrt (1 + x ^ 2) +1)) + 1 / 2ln (abs (sqrt (1 + x ^ 2) -1)) + C utilitzeu u ^ 2 = 1 + x ^ 2, x = sqrt (u ^ 2-1) 2u (du) / (dx) = 2x, dx = (udu) / x intsqrt (1 + x ^ 2) / xdx = int ( usqrt (1 + x ^ 2)) / x ^ 2du intu ^ 2 / (u ^ 2-1) du = int1 + 1 / (u ^ 2-1) du 1 / (u ^ 2-1) = 1 / ((u + 1) (u-1)) = A / (u + 1) + B / (u-1) 1 = A (u-1) + B (u + 1) u = 1 1 = 2B, B = 1/2 u = -1 1 = -2A, A = -1 / 2 int1-1 / (2 (u + 1)) + 1 / (2 (u-1)) du = u-1 / 2ln (abs (u + 1)) + 1 / 2ln (abs (u-1)) + C posant u = sqrt (1 + x ^ 2) de nou en dóna: sqrt (1 + x ^ 2) -1 / 2ln ( abs (sqrt (1 + x ^ 2) +1)) + 1 /
Els objectes A, B, C amb masses m, 2 m, i m es mantenen en una superfície de fricció menys horitzontal. L’objecte A es mou cap a B amb una velocitat de 9 m / s i fa una col·lisió elàstica amb ell. B fa una col·lisió totalment inelàstica amb C. Llavors la velocitat de C és?
Amb una col·lisió totalment elàstica, es pot suposar que tota l'energia cinètica es transfereix del cos en moviment al cos en repòs. 1 / 2m_ "inicial" v ^ 2 = 1 / 2m_ "altre" v_ "final" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Ara, en una col·lisió completament inelàstica, es perd tota l'energia cinètica, però es trasllada el moment. Per tant, m_ "inicial" v = m_ "final" v_ "final" 2m9 / sq
Comenceu amb DeltaOAU, amb la barra (OA) = a, amplieu la barra (OU) de tal manera que la barra (UB) = b, amb B a la barra (OU). Construïu una barra de intersecció (OA) de línia a barra paral·lela (UA) a C. Mostra aquesta barra (AC) = ab?
Vegeu l'explicació. Dibuixa una línia UD, paral·lela a AC, com es mostra a la figura. => UD = AC DeltaOAU i DeltaUDB són similars, => (UD) / (UB) = (OA) / (OU) => (UD) / b = a / 1 => UD = ab => AC = ab " (demostrat) "