Resposta:
65
Explicació:
Sigui el primer nombre
Llavors els 6 números consecutius són:
Resposta:
65
Explicació:
Deixeu que siguin els números
A més, s’afegeixen a 393
El primer i el segon termes d’una seqüència geomètrica són, respectivament, el primer i el tercer termes d’una seqüència lineal. El quart terme de la seqüència lineal és 10 i la suma dels seus primers cinc termes és 60.
{16, 14, 12, 10, 8} Una seqüència geomètrica típica es pot representar com c_0a, c_0a ^ 2, cdots, c_0a ^ k i una seqüència aritmètica típica com c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Cridar c_0 a com el primer element de la seqüència geomètrica que tenim {(c_0 a ^ 2 = c_0a + 2Delta -> "El primer i el segon de GS són el primer i el tercer d’un LS"), (c_0a + 3Delta = 10- > "El quart terme de la seqüència lineal és 10"), (5c_0a + 10Delta = 60 -> "La suma dels primers cinc termes és de 60"):}
El segon terme en una seqüència geomètrica és 12. El quart terme en la mateixa seqüència és 413. Quina és la relació comuna en aquesta seqüència?
Propietat comuna r = sqrt (413/12) Segon terme ar = 12 Quart terme ar ^ 3 = 413 Relació comuna r = {ar ^ 3} / {ar} r = sqrt (413/12)
"Lena té 2 enters consecutius.Es nota que la seva suma és igual a la diferència entre els seus quadrats. Lena escull dos altres enters consecutius i nota la mateixa cosa. Demostrar algebraicament que això és cert per a 2 enters consecutius?
Si us plau, consulteu l'explicació. Recordem que els enters consecutius difereixen per 1. Per tant, si m és un sencer, llavors, l’enter sencer ha de ser n + 1. La suma d'aquests dos enters és n + (n + 1) = 2n + 1. La diferència entre els seus quadrats és (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, com es desitja! Sent la joia de les matemàtiques.