Resposta:
A. 84 min
Explicació:
La tercera llei de Kepler estableix que el període quadrat està directament relacionat amb el radi cubat:
on T és el període, G és la constant gravitacional universal, M és la massa de la terra (en aquest cas), i R és la distància des dels centres dels 2 cossos.
A partir d’aquest es pot obtenir l’equació del període:
Sembla que si el radi es triplica (3R), llavors T augmentaria per un factor de
No obstant això, la distància R s'ha de mesurar a partir de la centres dels cossos. El problema assenyala que el satèl·lit vola molt a prop de la superfície de la terra (diferència molt petita), i perquè la nova distància 3R es pren a la superfície de la terra (diferència molt petita * 3), el radi difícilment canvia. Això significa que el període hauria de romandre al voltant dels 84 minuts. (tria A)
Resulta que si era possible volar un satèl·lit (teòricament) exactament a la superfície de la terra, el radi igualaria el radi de la terra i el període seria de 84 minuts (feu clic aquí per obtenir més informació). Segons aquest problema, el canvi de distància de la superfície 3R és efectiu
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
Dos satèl·lits de masses 'M' i 'm', respectivament, giren al voltant de la Terra en una mateixa òrbita circular. El satèl·lit amb massa "M" està molt per davant de l’altre satèl·lit, llavors, com es pot superar un altre satèl·lit ?? Donat, M> m i la seva velocitat és igual
Un satèl·lit de massa M amb velocitat orbital v_o gira al voltant de la terra tenint massa M_e a una distància de R del centre de la terra. Mentre que el sistema està en equilibri la força centrípeta a causa del moviment circular és igual i oposada a la força d’atracció gravitatòria entre la terra i el satèl·lit. Igualant ambdós obtenim (Mv ^ 2) / R = G (MxxM_e) / R ^ 2 on G és la constant gravitacional universal. => v_o = sqrt ((GM_e) / R) Veiem que la velocitat orbital és independent de la massa del satèl·lit. Per tant, un cop col
La densitat del nucli d'un planeta és rho_1 i la de la capa exterior és rho_2. El radi del nucli és R i el del planeta és 2R. El camp gravitacional a la superfície exterior del planeta és igual que a la superfície del nucli, que és la proporció rho / rho_2. ?
3 Suposem, la massa del nucli del planeta és m i la de la capa exterior és m 'Així, el camp a la superfície del nucli és (Gm) / R ^ 2 I, a la superfície de la closca serà (G) (m + m ')) / (2R) ^ 2 Donat, tots dos són iguals, per tant, (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 o, 4m = m + m 'o, m' = 3m ara, m = 4/3 pi R ^ 3 rho_1 (massa = volum * densitat) i, m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Per tant, 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Així, rho_1 = 7/3 rho_2 o, (rho_1) / (rho_2 ) = 7/3