Resposta:
4t quadrant
Explicació:
Els punts de coordenades es marquen com a
El primer quadrant (superior dret) té
El segon quadrant (a la part superior esquerra) té
El tercer quadrant (a la part inferior esquerra) té
El quart quadrant (inferior dreta) té
El punt mig del segment AB és (1, 4). Les coordenades del punt A són (2, -3). Com trobeu les coordenades del punt B?
Les coordenades del punt B són (0,11) el punt mig d’un segment, els dos punts finals són A (x_1, y_1) i B (x_2, y_2) és ((x_1 + x_2) / 2, (y_1 + y_2) / 2) com A (x_1, y_1) és (2, -3), tenim x_1 = 2 i y_1 = -3 i un punt mig és (1,4), tenim (2 + x_2) / 2 = 1 és a dir 2 + x_2 = 2 o x_2 = 0 (-3 + y_2) / 2 = 4 és a dir -3 + y_2 = 8 o y_2 = 8 + 3 = 11 Per tant, les coordenades del punt B són (0,11)
P és el punt mig del segment de línia AB. Les coordenades de P són (5, -6). Les coordenades d’A són (-1,10).Com trobeu les coordenades de B?
B = (x_2, y_2) = (11, -22) Si es coneix un punt final (x_1, y_1) i el punt mig (a, b) d'un segment de línia, podem utilitzar la fórmula de mig punt per cerqueu el segon punt final (x_2, y_2). Com utilitzar la fórmula del punt mig per trobar un punt final? (x_2, y_2) = (2a-x_1, 2b-y_1) Aquí, (x_1, y_1) = (- 1, 10) i (a, b) = (5, -6) Així, (x_2, y_2) = (2 colors (vermell) ((5)) -color (vermell) ((- 1)), 2 colors (vermell) ((- 6)) - color (vermell) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #
Dibuixeu el gràfic de y = 8 ^ x indicant les coordenades de qualsevol punt on el gràfic travessi els eixos de coordenades. Descriviu completament la transformació que transforma el gràfic Y = 8 ^ x al gràfic y = 8 ^ (x + 1)?
Mirar abaix. Les funcions exponencials sense cap transformació vertical mai creuen l'eix x. Com a tal, y = 8 ^ x no tindrà intercepcions en x. Tindrà una intercepció en y (0) = 8 ^ 0 = 1. La gràfica hauria de semblar-se a la següent. gràfic {8 ^ x [-10, 10, -5, 5]} La gràfica de y = 8 ^ (x + 1) és la gràfica de y = 8 ^ x moguda 1 unitat a l'esquerra, de manera que sigui y- la intercepció ara es troba a (0, 8). També veureu que y (-1) = 1. gràfic {8 ^ (x + 1) [-10, 10, -5, 5]} Esperem que això ajudi!