Resposta:
Àrea del trapezoide
Explicació:
L'àrea d'un trapezi és
on
en altres paraules, l’àrea d’un trapezoide és la “mitjana de les bases de l’altura”
en aquest cas,
i
que ens dóna
* nota: les "longituds laterals" són informació innecessària
El perímetre d'un triangle és de 24 polzades. El costat més llarg de 4 polzades és més llarg que el costat més curt, i el costat més curt té tres quarts de la longitud del costat central. Com es troba la longitud de cada costat del triangle?
Bé, aquest problema és simplement impossible. Si el costat més llarg és de 4 polzades, no hi ha manera que el perímetre d’un triangle sigui de 24 polzades. Esteu dient que 4 + (alguna cosa inferior a 4) + (alguna cosa inferior a 4) = 24, cosa que és impossible.
El perímetre d'un triangle és de 29 mm. La longitud del primer costat és el doble de la longitud del segon costat. La longitud del tercer costat és de 5 més que la longitud del segon costat. Com trobeu les longituds laterals del triangle?
S_1 = 12 s_2 = 6 s_3 = 11 El perímetre d'un triangle és la suma de les longituds de tots els seus costats. En aquest cas, es dóna que el perímetre és de 29 mm. Per tant, per a aquest cas: s_1 + s_2 + s_3 = 29 Així, resolent la longitud dels costats, traduïm les declaracions en forma d’equació. "La longitud de la 1a cara és el doble de la longitud del segon costat" Per resoldre-ho, assignem una variable aleatòria a s_1 o s_2. Per a aquest exemple, deixaria x la longitud del segon costat per evitar tenir fraccions a la meva equació. Així que sabem que:
El PERÍMETRE del trapezi isòsceles ABCD és igual a 80 cm. La longitud de la línia AB és 4 vegades més gran que la longitud d’una línia de CD que és de 2/5 la longitud de la línia BC (o les línies que són iguals al llarg). Quina és la zona del trapezi?
L'àrea del trapezi és de 320 cm ^ 2. Sigui el trapezi tal com es mostra a continuació: Aquí, si assumim el costat més petit CD = un costat més gran AB = 4a i BC = a / (2/5) = (5a) / 2. Com a tal BC = AD = (5a) / 2, CD = a i AB = 4a Per tant, el perímetre és (5a) / 2xx2 + a + 4a = 10a Però el perímetre és de 80 cm. i dos costats paral·lels mostrats a a b són 8 cm. i 32 cm. Ara, dibuixem perpendiculars fronts C i D a AB, que forma dos triangles en angle recte idèntics, la hipotenusa de la qual és 5 / 2xx8 = 20 cm. i la base és (4xx8-8) / 2 =