Resposta:
Explicació:
Bé, el perímetre és simplement la suma dels costats per a qualsevol forma en 2D.
Tenim tres costats en el nostre triangle: de
Les longituds de cadascuna es troben pel teorema de Pitágoras, utilitzant la diferència entre el
Per al primer:
Per al segon:
I per a la final:
així serà el perímetre
o en forma de surd,
La relació d’un costat del Triangle ABC amb el costat corresponent del Triangle DEF similar és de 3: 5. Si el perímetre del triangle DEF és de 48 polzades, quin és el perímetre del triangle ABC?
"Perímetre de" triangle ABC = 28.8 Des del triangle ABC ~ triangle DEF llavors si ("costat de" ABC) / ("costat corresponent de" DEF) = 3/5 color (blanc) ("XXX") rArr ("perímetre de "ABC) / (" perímetre de "DEF) = 3/5 i ja que" perímetre de "DEF = 48 tenim color (blanc) (" XXX ") (" perímetre de "ABC) / 48 = 3/5 rArrcolor ( blanc) ("XXX") "perímetre de" ABC = (3xx48) /5=144/5=28.8
Dues cantonades d'un triangle tenen angles de (2 pi) / 3 i (pi) / 4. Si un costat del triangle té una longitud de 12, quin és el perímetre més llarg possible del triangle?
El perímetre més llarg possible és de 12 + 40.155 + 32.786 = 84.941. Com dos angles són (2pi) / 3 i pi / 4, el tercer angle és pi-pi / 8-pi / 6 = (12pi-8pi-3pi) / 24- = pi / 12. Per al costat més llarg del perímetre de la longitud 12, diguem a, ha de ser l’angle més petit oposat pi / 12 i després utilitzar la fórmula sine amb altres dos costats serà 12 / (sin (pi / 12)) = b / (sin ((2pi) / 3)) = c / (sin (pi / 4)) Per tant, b = (12sin ((2pi) / 3)) / (sin (pi / 12)) = (12xx0.866) /0.2588=40.155 i c = ( 12xxsin (pi / 4)) / (sin (pi / 12)) = (12xx0.7071) /0.2588=32.786 Pe
Dues cantonades d'un triangle tenen angles de (2 pi) / 3 i (pi) / 4. Si un costat del triangle té una longitud de 4, quin és el perímetre més llarg possible del triangle?
P_max = 28,31 unitats. El problema us dóna dos dels tres angles en un triangle arbitrari. Atès que la suma dels angles en un triangle ha de sumar fins a 180 graus, o pi radians, podem trobar el tercer angle: (2pi) / 3 + pi / 4 + x = pi x = pi- (2pi) / 3- pi / 4 x = (12pi) / 12- (8pi) / 12- (3pi) / 12 x = pi / 12 dibuixem el triangle: el problema indica que un dels costats del triangle té una longitud de 4, però no especifica quin costat. No obstant això, en qualsevol triangle donat, és cert que el costat més petit serà oposat des de l'angle més petit. Si volem maximitzar el