Resposta:
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions:
Explicació:
Hi ha dues formes de vèrtex:
on
No tenim cap raó per excloure una de les formes, per tant, substituirem el vèrtex donat a tots dos:
Solucioneu els dos valors d’un punt d’ús
Aquí teniu les dues equacions:
Aquí hi ha una imatge que conté les dues paràboles i els dos punts:
Observeu que tots dos tenen el vèrtex
Quina és l’equació de la paràbola que té un vèrtex a (0, 0) i passa pel punt (-1, -64)?
F (x) = - 64x ^ 2 Si el vèrtex està a (0 | 0), f (x) = ax ^ 2 Ara, només fem sub-punt al punt (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Quina és l’equació de la paràbola que té un vèrtex a (0, 0) i passa pel punt (-1, -4)?
Y = -4x ^ 2> "l'equació d'una paràbola en" color (blau) "forma de vèrtex" és. • color (blanc) (x) y = a (xh) ^ 2 + k "on" (h, k) "són les coordenades del vèrtex i un" "és un multiplicador" "aquí" (h, k) = (0,0) "així" y = ax ^ 2 "per trobar un substitut" (-1, -4) "a l’equació" -4 = ay = -4x ^ 2larrcolor (blau) "equació de paràbola" gràfica { -4x ^ 2 [-10, 10, -5, 5]}
Escriviu la forma de pendent de l'equació amb el pendent donat que passa pel punt indicat. A.) la línia amb pendent -4 que passa per (5,4). i també B.) la línia amb pendent 2 que passa per (-1, -2). si us plau, ajuda, això és confús?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "és l'equació d'una línia en" color (blau) "forma punt-pendent". • color (blanc) (x) y-y_1 = m (x-x_1) "on m és el pendent i" (x_1, y_1) "un punt de la línia" (A) "donat" m = -4 "i "(x_1, y_1) = (5,4)" substituint aquests valors a l'equació dóna "y-4 = -4 (x-5) larrcolor (blau)" en forma de punt-pendent "(B)" donat "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blau) " en forma d