Resposta:
Àrea màxima possible del triangle B
Àrea mínima possible del triangle B
Explicació:
El tercer costat del Triangle A només pot tenir valors entre 4 i 20 aplicant la condició que
La suma de les dues cares d’un triangle ha de ser major que la tercera cara.
Deixeu que els valors siguin 4.1 i 19.9. (corregit a un punt decimal.
si els costats estan en la proporció
Cas - Max: quan el costat 12 de correspon a 4.1 d’A, obtenim l’àrea màxima del triangle B.
Cas - Min: Quan el costat 12 de correspon a 19,9 d’A, obtenim l’àrea mínima del triangle B.
El triangle A té un àrea de 15 i dos costats de longituds 8 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 16. Quines són les àrees màximes i mínimes possibles del triangle B?
Àrea màxima de Delta B = 78,3673 L'àrea mínima de Delta B = 48 Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 16 de Delta B ha de correspondre al costat 7 de Delta A. Els costats estan en la proporció 16: 7. Per tant, les àrees estaran en la proporció de 16 ^ 2: 7 ^ 2 = 256: 49 Àrea màxima del triangle B = (15 * 256) / 49 = 78.3673 Igual que per obtenir la zona mínima, el costat 8 del Delta A correspondrà al costat 16 de Delta B. Els costats es troben en la proporció 16: 8 i les àrees 256: 64 Àrea míni
El triangle A té un àrea de 15 i dos costats de longituds 8 i 7. El triangle B és similar al triangle A i té un costat amb una longitud de 14. Quines són les àrees màximes i mínimes possibles del triangle B?
Àrea màxima possible del triangle B = 60 Àrea mínima possible del triangle B = 45.9375 Les Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 14 de Delta B ha de correspondre al costat 7 de Delta A. Els costats estan en la proporció 14: 7. Per tant, les àrees estaran en la proporció de 14 ^ 2: 7 ^ 2 = 196: 49 Àrea màxima del triangle B = (15 * 196) / 49 = 60 De manera similar, per obtenir la zona mínima, el costat 8 del Delta A correspondrà al costat 14 de Delta B. Els costats es troben en la proporció 14: 8 i les àrees
El triangle A té una àrea de 24 i dos costats de longituds 12 i 15. El triangle B és similar al triangle A i té un costat amb una longitud de 25. Quines són les àrees màximes i mínimes possibles del triangle B?
L'àrea màxima del triangle és 104.1667 i l'àrea mínima 66.6667 Les Delta s A i B són similars. Per obtenir l’àrea màxima de Delta B, el costat 25 de Delta B ha de correspondre al costat 12 de Delta A. Els costats estan en la raó 25: 12. Per tant, les àrees estaran en la proporció de 25 ^ 2: 12 ^ 2 = 625: 144 Àrea màxima del triangle B = (24 * 625) / 144 = 104.1667 Igual que per obtenir la zona mínima, el costat 15 del Delta A correspondrà al costat 25 de Delta B. Els costats són de 25: 15 i les àrees 625: 225 Àrea mínima