Podem fer més que donar un exemple d’una equació lineal: podem donar l’expressió de totes les funcions lineals possibles.
Es diu que una funció és lineal si el dipendent i la variable independent creixen amb una relació constant. Per tant, si agafeu dos números
L’equació d’una línia, en notació de funció, es dóna per
El primer i el segon termes d’una seqüència geomètrica són, respectivament, el primer i el tercer termes d’una seqüència lineal. El quart terme de la seqüència lineal és 10 i la suma dels seus primers cinc termes és 60.
{16, 14, 12, 10, 8} Una seqüència geomètrica típica es pot representar com c_0a, c_0a ^ 2, cdots, c_0a ^ k i una seqüència aritmètica típica com c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Cridar c_0 a com el primer element de la seqüència geomètrica que tenim {(c_0 a ^ 2 = c_0a + 2Delta -> "El primer i el segon de GS són el primer i el tercer d’un LS"), (c_0a + 3Delta = 10- > "El quart terme de la seqüència lineal és 10"), (5c_0a + 10Delta = 60 -> "La suma dels primers cinc termes és de 60"):}
Sigui f la funció lineal tal que f (-1) = - 2 i f (1) = 4. Trobeu una equació per a la funció lineal f i després el graf y = f (x) a la graella de coordenades?
Y = 3x + 1 Atès que f és una funció lineal, és a dir, una línia tal que f (-1) = - 2 i f (1) = 4, això significa que passa per (-1, -2) i (1,4) ) Tingueu en compte que només una línia pot passar per dos punts donats i si els punts són (x_1, y_1) i (x_2, y_2), l’equació és (x-x_1) / (x_2-x_1) = (y-y_1) / (y_2-y_1) i per tant l'equació de la línia que passa per (-1, -2) i (1,4) és (x - (- 1)) / (1 - (- 1)) = (y - (- 2) )) / (4 - (- 2)) o (x + 1) / 2 = (i + 2) / 6 i multiplicant per 6 o 3 (x + 1) = y + 2 o y = 3x + 1
Escriviu la següent equació lineal en la notació de funció. y = 2x + 5?
F (x) = 2x + 5 La notació de funcions és un sistema de representació de funcions. Les funcions són tipus especials de relacions. Si una relació produeix exactament una sortida (y) per a cada entrada (x), llavors es denomina funció. Podeu escriure una relació en la notació de funció substituint y per f (x). Això es pronuncia "f de x" i significa "el valor de la funció donada l'entrada x.