Resposta:
Vegeu un procés de solució a continuació:
Explicació:
Primer, podem factoritzar aquest quadràtic com:
Ara podem resoldre cada terme al costat esquerre de l’equació
Solució 1)
Solució 2)
Els zeros són:
A continuació es mostra la gràfica de la funció f (x) = (x + 2) (x + 6). Quina afirmació sobre la funció és certa? La funció és positiva per a tots els valors reals de x on x> –4. La funció és negativa per a tots els valors reals de x on –6 <x <–2.
La funció és negativa per a tots els valors reals de x on –6 <x <–2.
Els zeros d'una funció f (x) són 3 i 4, mentre que els zeros d'una segona funció g (x) són 3 i 7. Quins són els zero (s) de la funció y = f (x) / g (x) )?
Només el zero de y = f (x) / g (x) és 4. Atès que els zeros d'una funció f (x) són 3 i 4, això significa (x-3) i (x-4) són factors de f (x ). A més, els zeros d'una segona funció g (x) són 3 i 7, que significa (x-3) i (x-7) són factors de f (x). Això significa que en la funció y = f (x) / g (x), encara que (x-3) hagi de cancel·lar el denominador g (x) = 0 no es defineix, quan x = 3. Tampoc no es defineix quan x = 7. Per tant, tenim un forat a x = 3. i només zero de y = f (x) / g (x) és 4.
Per què hi ha tanta gent la impressió que hem de trobar el domini d’una funció racional per trobar els seus zeros? Els zeros de f (x) = (x ^ 2-x) / (3x ^ 4 + 4x ^ 3-7x + 9) són 0,1.
Crec que trobar el domini d'una funció racional no està necessàriament relacionat amb la recerca de les seves arrels / zeros. Trobar el domini significa simplement trobar les condicions prèvies per a la mera existència de la funció racional. En altres paraules, abans de trobar les seves arrels, hem d’assegurar-nos en quines condicions existeix la funció. Podria semblar pedante fer-ho, però hi ha casos particulars quan això importa.