Resposta:
Vegeu l’explicació següent
Explicació:
# 6sinA + 8cosA = 10 #
Dividir els dos costats de #10#
# 3 / 5sinA + 4 / 5cosA = 1 #
Deixar # cosalpha = 3/5 # i # sinalpha = 4/5 #
# cosalpha = cosalpha / sinalpha = (3/5) / (4/5) = 3/4
Per tant, # sinAcosalpha + sinalphacosA = sin (A + alpha) = 1
Tan, # A + alpha = pi / 2 #, #mod 2pi #
# A = pi / 2-alfa
# tanA = tan (pi / 2-alpha) = cotalpha = 3/4 #
# tanA = 3/4 #
# QED #
Resposta:
mirar abaix.
Explicació:
# o, 6sinA - 10 = -8cosA #
# o, (6sinA -10) ^ 2 = (-8cosA) ^ 2 #
# o, 36sin ^ 2A- 2 * 6sinA * 10 + 100 = 64cos ^ 2A #
# o, 36sin ^ 2A - 120sinA + 100 = 64cos ^ 2A #
# o, 36sin ^ 2A - 120sinA + 100 = 64 (1 - sin ^ 2A) #
# o, 36sinA - 120sinA +100 = 64 - 64Sin ^ 2A #
#or, 100 sin ^ 2A - 120SinA + 36 = 0 #
# o, (10sinA-6) ^ 2 = 0 #
#or, 10sinA - 6 = 0 #
#or, SinA = 6/10 #
# o, SinA = 3/5 = p / h #
Utilitzant el teorema de Pitàgores, obtenim
# b ^ 2 = h ^ 2 - p ^ 2 #
#or, b ^ 2 = 5 ^ 2 - 3 ^ 2 #
#or, b ^ 2 = 25 - 9 #
#or, b ^ 2 = 16 #
#or, b = 4 #
# so, TanA = p / b = 3/4 #
És la resposta correcta?
Resposta:
veure solució
Explicació:
# 6sinA + 8cosA = 10 #
dividint els dos costats per #sqrt (6 ^ 2 + 8 ^ 2) #=#10#
# (6sinA) / 10 + 8cosA / 10 = 10/10 = 1
# cosalphasinA + sinalphacosA #=1
on # tanalpha = 4/3 # o bé # alpha = 53 graus #
això es transforma en
#sin (alpha + A) = sin90 #
#alpha + A = 90 #
# A = 90-alfa
presa # tanambdós costats
# tanA = bronzejat (90-alfa) #
# tanA = cotalpha #
# tanA = 3/4 #
# 6sinA + 8cosA = 10 #
# => 3sinA + 4cosA = 5 #
# => (3/5) sinA + (4/5) cosA = 1
# => (3/5) sinA + (4/5) cosA = (sinA) ^ 2 + (cosA) ^ 2 #
# color (vermell) (sin ^ 2A + cos ^ 2A = 1)
# => (3/5) sinA + (4/5) cosA = sinA * sinA + cosA * cosA #
# => sinA = 3/5 i cosA = 4/5 #
Per tant, #tanA = sinA / cosA = (3/5) / (4/5) = (3/5) × (5/4) = 3/4