així, des de la figura, sabem:
i,
tan,
i així,
A partir d’aquests paràmetres es pot obtenir fàcilment la zona i els angles del trapezi.
L’àrea d’un paral·lelogram es pot trobar multiplicant la distància entre dos costats paral·lels per la longitud d’aquests costats. Explica per què funciona aquesta fórmula?
Utilitzeu el fet que l'àrea d’un rectangle sigui igual a la seva amplada xx la seva alçada; llavors mostra que les ares d'un paral·lelogram general es poden reorganitzar en un rectangle amb una alçada igual a la distància entre costats oposats. Àrea de rectangle = WxxH Un paral·lelogram general pot reordenar la seva zona prenent una peça triangular d'un extrem i lliscant-la cap a l'extrem oposat.
Dos acords paral·lels d'un cercle amb longituds de 8 i 10 serveixen com a bases d'un trapezi inscrit al cercle. Si la longitud d'un radi del cercle és de 12, quina és la major àrea possible de tal trapezi inscrit descrit?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 1 i 2 Esquemàticament, podríem inserir un paral·lelogram ABCD en un cercle, i sempre que els costats AB i CD siguin acords dels cercles, en la forma de la figura 1 o la figura 2. La condició que els costats AB i CD hagin de ser els acords del cercle impliquen que el trapezoide inscrit ha de ser un isòsceles perquè les diagonals del trapezoide (AC i CD) són iguals perquè A hat BD = B hat AC = B hatD C = Un CD de barret i la línia perpendicular a AB i CD A través del centre E es barregen aquests acords (això significa que AF = B
Dos costats oposats d'un paral·lelogram tenen longituds de 3. Si una cantonada del paral·lelogram té un angle de pi / 12 i l'àrea del paral·lelogram és de 14, quant de temps són els altres dos costats?
Assumint una mica de trigonometria bàsica ... Sigui x la longitud (comuna) de cada costat desconegut. Si b = 3 és la mesura de la base del paral·lelogram, h sigui la seva alçada vertical. L’àrea del paral·lelogram és bh = 14 Atès que es coneix b, tenim h = 14/3. Des de Trig bàsic, sin (pi / 12) = h / x. Podem trobar el valor exacte del sinus utilitzant una fórmula de mig angle o diferència. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Així ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h