Resposta:
L’equació quadràtica és
Explicació:
Sigui l’equació quadràtica
El gràfic passa per
Així, aquests punts satisfaran l’equació quadràtica.
(2) obtenim,
Per tant, l’equació quadràtica és
gràfic {-2x ^ 2 + 2x + 24 -50.63, 50.6, -25.3, 25.32} Ans
El gràfic d’una funció quadràtica té intercepcions x-2 i 7/2, com escriviu una equació quadràtica que té aquestes arrels?
Trobeu f (x) = ax ^ 2 + bx + c = 0 coneixent les dues arrels reals: x1 = -2 i x2 = 7/2. Donades dues arrels reals c1 / a1 i c2 / a2 d’una equació quadràtica ax ^ 2 + bx + c = 0, hi ha 3 relacions: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (suma diagonal). En aquest exemple, les 2 arrels reals són: c1 / a1 = -2/1 i c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. L'equació quadràtica és: Resposta: 2x ^ 2 - 3x - 14 = 0 (1) Comproveu: trobeu les 2 arrels reals de (1) pel nou mètode AC. Equació convertida: x ^ 2 - 3x - 28 = 0 (2). Resoldre l'equació
Quina és l’equació d’una funció quadràtica el gràfic que passa per (-3,0) (4,0) i (1,24)? Escriviu la vostra equació en forma estàndard.
Y = -2x ^ 2 + 2x + 24 Bé donada la forma estàndard d’una equació quadràtica: y = ax ^ 2 + bx + c podem utilitzar els vostres punts per fer 3 equacions amb 3 incògnites: Equació 1: 0 = a (- 3) ^ 2 + b (-3) + c 0 = 9a-3b + c Equació 2: 0 = a4 ^ 2 + b4 + c 0 = 16a + 4b + c Equació 3: 24 = a1 ^ 2 + b1 + c 24 = a + b + c així que tenim: 1) 0 = 9a-3b + c 2) 0 = 16a + 4b + c 3) 24 = a + b + c Utilitzant l'eliminació (que suposo que sabeu fer) aquestes equacions lineals resolen: a = -2, b = 2, c = 24 Ara, després de tot aquest treball d’eliminació, posem els valors a
Quina declaració descriu millor l’equació (x + 5) 2 + 4 (x + 5) + 12 = 0? L’equació és de forma quadràtica, ja que es pot reescriure com una equació quadràtica amb u u (x + 5). L’equació és de forma quadràtica perquè quan s’expandeix,
Com s’explica a continuació, la substitució de l’U la qualificarà de quadràtica en u. Per a quadràtics en x, la seva expansió tindrà la major potència de x com 2, la qualificarà millor com quadràtica en x.