Resposta:
Explicació:
El denominador de f (x) no pot ser zero, ja que faria que f (x) no estigués definida. L’equivalència del denominador a zero i la resolució proporciona els valors que x no pot ser i si el numerador no és zero per a aquests valors, s’anomenen verticalment asimptotes.
# "resol" 2x ^ 2 + 5x = 0rArrx (2x + 5) = 0
# rArrx = 0 "i" x = -5 / 2 "són els asimptotes" #
# "Es produeixen asimptotes horitzontals com" #
#lim_ (xto + -oo), f (x) toc "(una constant)" # dividir els termes en numerador / denominador per la potència més alta de x, és a dir
# x ^ 2 #
#f (x) = (x / x ^ 2-2 / x ^ 2) / ((2x ^ 2) / x ^ 2 + (5x) / x ^ 2) = (1 / x-2 / x ^ 2) / (2 + 5 / x) # com
# xto + -oo, f (x) a (0-0) / (2 + 0 #
#rArr "asymptote is" y = 0 # gràfic {(x-2) / (2x ^ 2 + 5x) -10, 10, -5, 5}
Què són les asíntotes i les discontinuïtats extraïbles, si n'hi ha, de f (x) = 1 / (8x + 5) -x?
Asimptota a x = -5 / 8 No hi ha discontinuïtats extraïbles Per resoldre els asimptotes, establiu el numerador igual a 0: 8x + 5 = 0 8x = -5 x = -5 / 8 gràfic {1 / (8x + 5) -x [-10, 10, -5, 5]}
Què són les asíntotes i les discontinuïtats extraïbles, si n'hi ha, de f (x) = (1 / (x-10)) + (1 / (x-20))?
Mirar abaix. Afegiu les fraccions: ((x-20) + (x-10)) / ((x-10) (x-20)) = (2x-30) / ((x-10) (x-20)) factor numerador: (2 (x-15)) / ((x-10) (x-20)) No podem cancel·lar cap factor en el numerador amb factors al denominador, de manera que no hi ha discontinuïtats extraïbles. La funció no està definida per a x = 10 i x = 20. (divisió per zero) Per tant: x = 10 i x = 20 són asimptotes verticals. Si expandim el denominador i el numerador: (2x-30) / (x ^ 2-30x + 22) Divideix per x ^ 2: ((2x) / x ^ 2-30 / x ^ 2) / (x ^ 2 / x ^ 2- (30x) / x ^ 2 + 22 / x ^ 2) Cancel·lació: ((2) / x-30 / x
Què són les asíntotes i les discontinuïtats extraïbles, si n'hi ha, de f (x) = 1 / x ^ 2-2x?
No hi ha discontinuitats extraïbles. Hi ha una asíntota vertical, x = 0 i una asíntota de inclinació y = -2x Escriu f (x) = -2x + 1 / x ^ 2 Y = -2x és la inclinació asimptota i x = 0 és l'asimptota vertical.