Resposta:
Explicació:
La forma estàndard d’equació d’una paràbola és
A mesura que passa per punts
i
Ara, posant (B) in (A) i (C), obtenim
S'està afegint (1) i (2), obtenim
i per tant
Per tant, l’equació de paràbola és
gràfic {3x ^ 2-2x + 2 -10,21, 9.79, -1.28, 8.72}
La línia x = 3 és l'eix de simetria per a la gràfica d'una paràbola conté els punts (1,0) i (4, -3), quina és l'equació de la paràbola?
Equació de la paràbola: y = ax ^ 2 + bx + c. Trobeu a, b i c. x de l'eix de simetria: x = -b / (2a) = 3 -> b = -6a Escriptura que passa el gràfic en el punt (1, 0) i el punt (4, -3): (1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a (2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1 b = -6a = -6; i c = 5a = 5 y = x ^ 2 - 6x + 5 Comproveu amb x = 1: -> y = 1 - 6 + 5 = 0. D'acord
Quina és l'equació, en forma estàndard, d'una paràbola que conté els següents punts (-2, -20), (0, -4), (4, -20)?
Mirar abaix. Una paràbola és una cònica i té una estructura com f (x, y) = ax ^ 2 + bxy + cy ^ 2 + d Si aquesta cònica obeeix els punts donats, llavors f (-2, -20) = 4 a + 40 b + 400 c + d = 0 f (0, -4) = 16 c + d = 0 f (4, -20) = 16 a - 80 b + 400 c + d = 0 Resoldre per a, b, c obtenir a = 3d, b = 3 / 10d, c = d / 16 Ara, fixant un valor compatible per d obtenim una paràbola factible Ex. per a d = 1 obtenim a = 3, b = 3/10, c = -1 / 16 o f (x, y) = 1 + 3 x ^ 2 + (3 xy) / 10 - y ^ 2/16 però aquesta cònica és una hipèrbola! Així, la paràbola buscada té una est
En un tros de paper gràfic, dibuixa els punts següents: A (0, 0), B (5, 0) i C (2, 4). Aquestes coordenades seran els vèrtexs d’un triangle. Utilitzant la Fórmula del punt mig, quins són els punts mitjans del costat del triangle, els segments AB, BC i CA?
Color (blau) ((2,5,0), (3,5,2), (1,2) Podem trobar tots els punts mitjans abans de dibuixar qualsevol cosa. Tenim costats: AB, BC, CA Les coordenades del punt mig de un segment de línia està donat per: ((x_1 + x_2) / 2, (y_1 + y_2) / 2) Per a AB tenim: ((0 + 5) / 2, (0 + 0) / 2) => (5 /2,0)=>color (blau) ((2,5,0) Per a BC tenim: ((5 + 2) / 2, (0 + 4) / 2) => (7 / 2,2) => color (blau) ((3,5,2) Per a CA tenim: ((2 + 0) / 2, (4 + 0) / 2) => color (blau) ((1,2) Ara dibuixem tots els punts i construir el triangle: