Resposta:
El pendent és
Explicació:
Utilitzeu la fórmula de pendent:
Aquí
# (7/6, -5) = (x_1, y_1) # # (- 1/3, -1/3) = (x_2, y_2) #
Tan
es converteix
perquè dos negatius creen un valor positiu.
Resposta:
Explicació:
Tan
Els Lakers van aconseguir un total de 80 punts en un partit de bàsquet contra els Bulls. Els Lakers van fer un total de 37 cistelles de dos punts i tres punts. Quants tirs de dos punts van fer els Lakers? Escriviu un sistema d'equacions lineals que es poden utilitzar per resoldre-ho
Els Lakers van fer 31 punters i 6 triples. Sigui x el nombre de captures de dos punts realitzades i deixeu el nombre de tirs de tres punts realitzats. Els Lakers van obtenir un total de 80 punts: 2x + 3y = 80 Els Lakers van fer un total de 37 cistelles: x + y = 37 Aquestes dues equacions es poden resoldre: (1) 2x + 3y = 80 (2) x + y = 37 L'equació (2) dóna: (3) x = 37-y Substituint (3) a (1) dóna: 2 (37-y) + 3y = 80 74-2y + 3y = 80 y = 6 Ara només fem servir el equació més simple (2) per obtenir x: x + y = 37 x + 6 = 37 x = 31 Per tant, els Lakers van fer 31 punters i 6 triples.
Pregunta 2: la línia FG conté els punts F (3, 7) i G ( 4, 5). La línia HI conté els punts H ( 1, 0) i I (4, 6). Les línies FG i HI són ...? paral·lela ni perpendicular
"ni"> "utilitzant el següent en relació amb les pendents de les línies" • "les línies paral·leles tenen pendents iguals" • "el producte de línies perpendiculars" = -1 "calculeu els pendents m utilitzant el" color (blau) "fórmula de degradat" • • color (blanc) (x) m = (y_2-y_1) / (x_2-x_1) "deixa" (x_1, y_1) = F (3,7) "i" (x_2, y_2) = G (-4, - 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 "deixa" (x_1, y_1) = H (-1,0) "i" (x_2, y_2) = I (4,6) m_ (HI) = (6-0) / (4 - (- 1)) = 6/5 m
Quina de les següents és la pregunta de la línia que passa pels dos punts següents: (5, -6) i (5, -3)
A. x = 5 En els dos punts de coordenades que heu proporcionat: (5, -6) i (5, -3), quina és la coordenada x en tots dos? 5 correcte? Per tant, els 2 punts de coordenades estaran situats a la línia vertical: x = 5