Resposta:
Explicació:
Utilitzeu el quadrat de la fórmula de distància:
Estableix això igual a zero i després resolgui per x:
Vaig utilitzar WolframAlpha per resoldre aquesta equació quàrtica.
Les coordenades x dels punts que formen una perpendicular a la corba amb el punt
Els dos punts un a la corba són:
El pendent del primer punt és:
El pendent del segon punt és:
Utilitzant el punt donat per a la forma del punt-pendent:
Aquí es mostra el gràfic de la corba i les 2 perpendiculars per demostrar-ho:
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /
La línia n passa a través dels punts (6,5) i (0, 1). Quina és la intercepció y de la línia k, si la línia k és perpendicular a la línia n i passa pel punt (2,4)?
7 és la intercepció y de la línia k Primer, trobem el pendent de la línia n. (1-5) / (0-6) (-4) / - 6 2/3 = m El pendent de la línia n és 2/3. Això vol dir que el pendent de la línia k, que és perpendicular a la línia n, és el recíproc negatiu de 2/3 o -3/2. Així, doncs, l’equació que tenim fins ara és: y = (- 3/2) x + b Per calcular la intercepció y o b, només heu de connectar (2,4) a l’equació. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Així que la intercepció y és de 7
Demostrar que donat una línia i un punt no en aquesta línia, hi ha exactament una línia que passa per aquest punt perpendicular a aquesta línia? Podeu fer-ho matemàticament o bé mitjançant la construcció (els antics grecs ho van fer)?
Mirar abaix. Suposem que la línia donada és AB, i el punt és P, que no és a AB. Ara, suposem, hem dibuixat un PO perpendicular a AB. Hem de demostrar que, Aquest PO és l'única línia que passa per P que és perpendicular a AB. Ara utilitzarem una construcció. Construïm un altre PC perpendicular a AB del punt P. Ara la prova. Tenim, OP perpendicular AB [No puc utilitzar el signe perpendicular, com anyoying] I, Also, PC perpendicular AB. Així doncs, OP || PC. [Tots dos són perpendiculars a la mateixa línia.] Ara tant OP com PC tenen el punt P comú i s