Resposta:
Vegeu la solució a continuació
Explicació:
Atès que l’equació és quadràtica, el seu gràfic seria una paràbola.
gràfic {x ^ 2 + 14x + 58 -42,17, 37,83, -15,52, 24,48}
Com es pot veure a la gràfica, les arrels són complexes per a aquesta equació quadràtica.
El vèrtex es pot trobar mitjançant la fórmula següent,
on,
També
aquí,
Connexió dels valors
Per tant, el vèrtex és donat per
Suposem que una paràbola té vèrtex (4,7) i passa també pel punt (-3,8). Quina és l’equació de la paràbola en forma de vèrtex?
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Hi ha dues formes de vèrtex: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h on (h, k) és el vèrtex i el valor de "a" es pot trobar utilitzant un altre punt. No se'ns dóna cap raó per excloure una de les formes, per tant substituïm el vèrtex donat a ambdues: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Resoldre per a tots dos valors d’un usant el punt (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7
Quina és l'equació d'una paràbola amb un focus a (-2, 6) i un vèrtex a (-2, 9)? Què passa si el focus i el vèrtex s’han canviat?
L’equació és y = -1 / 12 (x + 2) ^ 2 + 9. L’altra equació és y = 1/12 (x + 2) * 2 + 6 El focus és F = (- 2,6) i el vèrtex és V = (- 2,9) Per tant, la directriu és y = 12 com el vèrtex és el punt mig del focus i el directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsevol punt (x, y) de la paràbola és equidistant del focus i la directriu y-12 = sqrt ((x + 2) ^ 2 + (i-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 i ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 gràfics {( y + 1/12 (x + 2) ^ 2-9) (i-1
Un triangle té vèrtexs A, B i C.El vèrtex A té un angle de pi / 2, el vèrtex B té un angle de (pi) / 3 i l'àrea del triangle és de 9. Quina és l'àrea de la circumferència del triangle?
Cercle inscrit Àrea = 4.37405 unitats quadrades Resolleu per als costats del triangle utilitzant l 'àrea donada = 9 i els angles A = pi / 2 i B = pi / 3. Utilitzeu les següents fórmules per a Àrea: Àrea = 1/2 * a * b * sin C Àrea = 1/2 * b * c * sin A Àrea = 1/2 * a * c * sin B de manera que tenim 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Solució simultània amb aquestes equacions resultat a = 2 * root4 108 b = 3 * root4 12 c = root4 108 resol la meitat del perímetre ss = (a + b + c) /2=7.62738 utilitzant aquests