L’alçada d’una casa d’arbre és cinc vegades l’altura d’una casa de gossos. Si la casa de l'arbre és més alta de 16 metres que la casa de gossos, quina altura és la casa de l'arbre?
La casa de l'arbre té uns 20 metres d'alçada. Anomenem l'alçada de la casa de l'arbre T, i l'alçada de la caseta de gos. D Per tant, sabem dues coses: en primer lloc, l'alçada de la casa de l'arbre és 5 vegades l'altura de la casa del gos. Això es pot representar com: T = 5 (D) En segon lloc, la casa de l'arbre és de 16 peus més alta que la casa de gos. Això es pot representar com: T = D + 16 Ara tenim dues equacions diferents que cadascuna té T en elles. Així que en comptes de dir T = D + 16, podem dir: 5 (D) = D + 16 [perqu
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
Els objectes A, B, C amb masses m, 2 m, i m es mantenen en una superfície de fricció menys horitzontal. L’objecte A es mou cap a B amb una velocitat de 9 m / s i fa una col·lisió elàstica amb ell. B fa una col·lisió totalment inelàstica amb C. Llavors la velocitat de C és?
Amb una col·lisió totalment elàstica, es pot suposar que tota l'energia cinètica es transfereix del cos en moviment al cos en repòs. 1 / 2m_ "inicial" v ^ 2 = 1 / 2m_ "altre" v_ "final" ^ 2 1 / 2m (9) ^ 2 = 1/2 (2m) v_ "final" ^ 2 81/2 = v_ "final "^ 2 sqrt (81) / 2 = v_" final "v_" final "= 9 / sqrt (2) Ara, en una col·lisió completament inelàstica, es perd tota l'energia cinètica, però es trasllada el moment. Per tant, m_ "inicial" v = m_ "final" v_ "final" 2m9 / sq