Resposta:
El vèrtex és
Explicació:
Primer col·loqueu l’equació en forma estàndard.
Aquesta és una equació quadràtica en forma estàndard,
El vèrtex és el punt màxim o mínim d'una paràbola. En aquest cas, des de
Per trobar el vèrtex d'una paràbola en forma estàndard, primer trobeu l'eix de simetria, que ens donarà
Eix de simetria
Substituïu els valors de
Simplifica.
Determineu el valor de
Substituïu
Simplifica.
Simplifica.
Vèrtex =
gràfic {y = x ^ 2-8x-9 -10.21, 7.01, -26.63, -18.02}
Resposta:
Explicació:
Ens donen
Primer vull aconseguir-ho en un format estàndard Això és fàcil, només hem de reordenar-lo per adaptar-lo
Ara ho tenim
Ara ens connectem
Bé, donem una ullada a això:
Després de fer tot aquest treball, anem a fer-ho
Ara ho tenim
Ara està en forma de vèrtex i, una vegada que tenim, és molt ràpid trobar el vèrtex. Aquesta és la forma de vèrtex,
En el cas de la nostra equació tenim
Tingueu en compte això
exemple:
Així doncs, el vèrtex és
gràfic {x ^ 2-8x-9}
Sembla que ho tenim bé !! Bona feina!
Suposem que una paràbola té vèrtex (4,7) i passa també pel punt (-3,8). Quina és l’equació de la paràbola en forma de vèrtex?
En realitat, hi ha dues paràboles (de forma de vèrtex) que compleixen les vostres especificacions: y = 1/49 (x- 4) ^ 2 + 7 i x = -7 (y-7) ^ 2 + 4 Hi ha dues formes de vèrtex: y = a (x- h) ^ 2 + k i x = a (yk) ^ 2 + h on (h, k) és el vèrtex i el valor de "a" es pot trobar utilitzant un altre punt. No se'ns dóna cap raó per excloure una de les formes, per tant substituïm el vèrtex donat a ambdues: y = a (x- 4) ^ 2 + 7 i x = a (y-7) ^ 2 + 4 Resoldre per a tots dos valors d’un usant el punt (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 i -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 i - 7
Quina és l'equació d'una paràbola amb un focus a (-2, 6) i un vèrtex a (-2, 9)? Què passa si el focus i el vèrtex s’han canviat?
L’equació és y = -1 / 12 (x + 2) ^ 2 + 9. L’altra equació és y = 1/12 (x + 2) * 2 + 6 El focus és F = (- 2,6) i el vèrtex és V = (- 2,9) Per tant, la directriu és y = 12 com el vèrtex és el punt mig del focus i el directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsevol punt (x, y) de la paràbola és equidistant del focus i la directriu y-12 = sqrt ((x + 2) ^ 2 + (i-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 i ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 gràfics {( y + 1/12 (x + 2) ^ 2-9) (i-1
Un triangle té vèrtexs A, B i C.El vèrtex A té un angle de pi / 2, el vèrtex B té un angle de (pi) / 3 i l'àrea del triangle és de 9. Quina és l'àrea de la circumferència del triangle?
Cercle inscrit Àrea = 4.37405 unitats quadrades Resolleu per als costats del triangle utilitzant l 'àrea donada = 9 i els angles A = pi / 2 i B = pi / 3. Utilitzeu les següents fórmules per a Àrea: Àrea = 1/2 * a * b * sin C Àrea = 1/2 * b * c * sin A Àrea = 1/2 * a * c * sin B de manera que tenim 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Solució simultània amb aquestes equacions resultat a = 2 * root4 108 b = 3 * root4 12 c = root4 108 resol la meitat del perímetre ss = (a + b + c) /2=7.62738 utilitzant aquests