Resposta:
Explicació:
# "l'equació d'una línia en" color (blau) "forma punt-pendent" # és.
#color (vermell) (barra (ul (| color (blanc) (2/2) color (negre) (y-y_1 = m (x-x_1)) color (blanc) (22) |))) # #
# "on m és el pendent i" (x_1, y_1) "un punt a la línia" #
# "per calcular m utilitzeu el" color (blau) "fórmula de degradat" #
#color (vermell) (barra (ul (| color (blanc) (2/2) color (negre) (m = (y_2-y_1) / (x_2-x_1)) color (blanc) (2/2) |))) #
# "deixa" (x_1, y_1) = (4,5) "i" (x_2, y_2) = (- 3, -1) #
#rArrm = (- 1-5) / (- 3-4) = (- 6) / (- 7) = 6/7 #
# "utilitzant" m = 6/7 "i" (x_1, y_1) = (4,5) "llavors" #
# y-5 = 6/7 (x-4) larrcolor (vermell) "en forma de pendent"
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
Una línia passa pels punts (2,1) i (5,7). Una altra línia passa pels punts (-3,8) i (8,3). Les línies són paral·leles, perpendiculars o cap altra?
Ni paral·lel ni perpendicular Si el gradient de cada línia és el mateix, són paral·lels. Si el gradient de és l'inversor negatiu de l'altre, són perpendiculars entre si. És a dir: un és m "i l'altre és" -1 / m Que la línia 1 sigui L_1 Que la línia 2 sigui L_2 Que el gradient de la línia 1 sigui m_1 Que el gradient de la línia 2 sigui m_2 "gradient" = ("Canvia i -axis ") / (" Canvia en l'eix x ") => m_1 = (7-1) / (5-2) = 6/3 = +2 .............. ....... (1) => m_2 = (3-8) / (8 - (- 3)) = (-5) /
Escriviu la forma de pendent de l'equació amb el pendent donat que passa pel punt indicat. A.) la línia amb pendent -4 que passa per (5,4). i també B.) la línia amb pendent 2 que passa per (-1, -2). si us plau, ajuda, això és confús?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "és l'equació d'una línia en" color (blau) "forma punt-pendent". • color (blanc) (x) y-y_1 = m (x-x_1) "on m és el pendent i" (x_1, y_1) "un punt de la línia" (A) "donat" m = -4 "i "(x_1, y_1) = (5,4)" substituint aquests valors a l'equació dóna "y-4 = -4 (x-5) larrcolor (blau)" en forma de punt-pendent "(B)" donat "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (blau) " en forma d