la temperatura disminueix
Resposta:
La temperatura disminueix amb l'alçada.
Explicació:
A mesura que es mou més a l'atmosfera, la temperatura disminueix adiabáticamente (sense addició ni eliminació de calor). Aquest és un concepte confús, però faré tot el possible per explicar-ho.
El pes de l'atmosfera per sobre d'un punt concret és la pressió de l'aire o la pressió atmosfèrica. A mesura que s’accelera la quantitat d’atmosfera superior per baixar el pes sobre aquest punt disminueix i, per tant, la pressió és menor.
Ara, la pressió i la temperatura són directament proporcionals, de manera que una olla a pressió funciona de la mateixa manera. Per tant, a mesura que la pressió disminueix, la temperatura disminueix, però, què és tot aquest assumpte "adiabàticament"?
Per entendre per què es tracta d’un procés adiabàtic, hem de mirar les molècules. La calor és realment l’energia cinètica de les molècules d’una substància. A mesura que la pressió disminueix en una parcel·la d’aire, les molècules se separen més. Per tant, tot i que cada molècula pot tenir exactament la mateixa quantitat d'energia que va fer abans, perquè estan més separades interactuen amb menys freqüència les unes amb les altres, o amb un termòmetre si teniu un.
Espero fer-ho clar. Si necessiteu més explicacions, no dubteu a preguntar-vos-ho.
El perímetre d’un quadrat és de 12 cm més gran que un altre quadrat. La seva superfície supera la superfície de l’altre quadrat de 39 cm2. Com es troba el perímetre de cada plaça?
Els 32 cm i els 20 cm deixen que el costat del quadrat més gran sigui un i el quadrat més petit sigui b 4a - 4b = 12 així que a - b = 3 a ^ 2 - b ^ 2 = 39 (a + b) (ab) = 39 dividint les dues equacions nosaltres obteniu a + b = 13 i afegiu ara a + b i ab, obtenim 2a = 16 a = 8 i b = 5 els perímetres són 4a = 32cm i 4b = 20cm
La superfície de joc en el joc de curling és una fulla de gel rectangular amb una superfície d’uns 225 m ^ 2. L’amplada és d’uns 40 m menys que la longitud. Com trobeu les dimensions aproximades de la superfície de joc?
Expresseu l'amplada en termes de longitud, a continuació, substituïu i solucioneu per arribar a les dimensions de L = 45m i W = 5m. Comencem amb la fórmula d'un rectangle: A = LW: se'ns dóna la zona i sabem que l'amplada és de 40 metres menys de la longitud. Escrivim la relació entre L i W cap avall: W = L-40 I ara podem resoldre A = LW: 225 = L (L-40) 225 = L ^ 2-40L Vaig a restar L ^ 2-40L des d'ambdós costats, a continuació, multipliqueu per -1 de manera que L ^ 2 sigui positiu: L ^ 2-40L-225 = 0 Ara anem a factoritzar i resoldre L: (L-45) (L + 5) = 0 (L-45 ) =
El període d'un satèl·lit que es mou molt a prop de la superfície de la terra del radi R és de 84 minuts. quin serà el període del mateix satèl·lit, si es pren a una distància de 3R de la superfície de la terra?
A. 84 min La tercera llei de Kepler estableix que el període quadrat està directament relacionat amb el radi cubat: T ^ 2 = (4π ^ 2) / (GM) R ^ 3 on T és el període, G és la constant gravitacional universal, M és la massa de la terra (en aquest cas), i R és la distància dels centres dels dos cossos. A partir d’aquest es pot obtenir l’equació per al període: T = 2pisqrt (R ^ 3 / (GM)) Sembla que si el radi es triplica (3R), T augmentaria per un factor de sqrt (3 ^ 3) = sqrt27 Tanmateix, la distància R s'ha de mesurar des dels centres dels cossos. El problema assenya