Resposta:
Explicació:
Consulteu la figura següent
En el paral·lelogram donat, si dibuixem una línia perpendicular a un costat mesurant 30, des del vèrtex comú amb un dels costats que mesuren 24, el segment format (quan compleix la línia en què l’altre mesura 30 segons) és l’altura (
De la figura podem veure-ho
L'àrea d'un paral·lelogram és
Tan
La mesura d’un angle interior d’un paral·lelogram és de 30 graus més que dues vegades la mesura d’un altre angle. Quina és la mesura de cada angle del paral·lelogram?
La mesura dels angles és de 50, 130, 50 i 130. Com es pot veure al diagrama, els angles adjacents són complementaris i els angles oposats són iguals. Sigui un angle un A Un altre angle adjacent b serà 180-a Donat b = 2a + 30. Eqn (1) Com B = 180 - A, Substituint el valor de b en Eqn (1) obtenim, 2A + 30 = 180 - R:. 3a = 180 - 30 = 150 A = 50, B = 180 - A = 180 - 50 = 130 La mesura dels quatre angles és 50, 130, 50, 130
Dos costats oposats d'un paral·lelogram tenen longituds de 3. Si una cantonada del paral·lelogram té un angle de pi / 12 i l'àrea del paral·lelogram és de 14, quant de temps són els altres dos costats?
Assumint una mica de trigonometria bàsica ... Sigui x la longitud (comuna) de cada costat desconegut. Si b = 3 és la mesura de la base del paral·lelogram, h sigui la seva alçada vertical. L’àrea del paral·lelogram és bh = 14 Atès que es coneix b, tenim h = 14/3. Des de Trig bàsic, sin (pi / 12) = h / x. Podem trobar el valor exacte del sinus utilitzant una fórmula de mig angle o diferència. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Així ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h
Un paral·lelogram té els costats A, B, C i D. Els costats A i B tenen una longitud de 3 i els costats C i D tenen una longitud de 7. Si l’angle entre els costats A i C és (7 pi) / 12, quina és l’àrea del paral·lelogram?
20.28 unitats quadrades L'àrea d'un paral·lelogram es dóna pel producte dels costats adjacents multiplicats pel sinus de l'angle entre els costats. Aquí els dos costats adjacents són 7 i 3 i l'angle entre ells és 7 pi / 12. Ara Sin 7 pi / 12 radians = sin 105 graus = 0.965925826 Substituir, A = 7 * 3 * 0.965925826 = 20.28444 unitats quadrades.