Com es divideix (2i -7) / (- 5 i -8) en forma trigonomètrica?

Com es divideix (2i -7) / (- 5 i -8) en forma trigonomètrica?
Anonim

Resposta:

# 0.51-0.58i #

Explicació:

Tenim #z = (- 7 + 2i) / (- 8-5i) = (7-2i) / (8 + 5i) #

Per # z = a + bi #, # z = r (costheta + isintheta) #, on:

  • # r = sqrt (a ^ 2 + b ^ 2) #
  • # theta = tan ^ -1 (b / a) #

Per # 7-2i #:

# r = sqrt (7 ^ 2 + 2 ^ 2) = sqrt53 #

# theta = tan ^ -1 (-2/7) ~~ -0.28 ^ c #, malgrat això # 7-2i # està en el quadrant 4 i, per tant, cal afegir # 2pi # per fer-ho positiu, també # 2pi # tornaria un cercle.

# theta = tan ^ -1 (-2/7) + 2pi ~~ 6 ^ c #

Per # 8 + 5i #:

# r = sqrt (8 ^ 2 + 5 ^ 2) = sqrt89 #

# theta = tan ^ -1 (5/8) ~~ 0.56 ^ c #

Quan ho tinguem # z_1 / z_1 # en forma de trigó, ho fem # r_1 / r_1 (cos (theta_1-theta_2) + isin (theta_1-theta_2) #

# z_1 / z_2 = sqrt53 / sqrt89 (cos (6-0.56) + isin (6-0.56)) = sqrt4717 / 89 (cos (5,44) + isin (5,44)) = 0,51-0,58i

Prova:

# (7-2i) / (8 + 5i) * (8-5i) / (8-5i) = (56-51i-10) / (64 + 25) = (46-51i) /89=0,52-0,57 #