Resposta:
Explicació:
Deixar
i
Si
Per tant, el Àrea A del rectangle
Així,
Per
A més,
D'acord amb,
Per tant, la major àrea possible del rectangle és
Gaudeix de les matemàtiques.
L'àrea d'un rectangle és de 100 polzades quadrades. El perímetre del rectangle és de 40 polzades? Un segon rectangle té la mateixa zona però un perímetre diferent. El segon rectangle és un quadrat?
El segon rectangle no és un quadrat. La raó per la qual el segon rectangle no és un quadrat és perquè el primer rectangle és el quadrat. Per exemple, si el primer rectangle (a.k.a. el quadrat) té un perímetre de 100 polzades quadrades i un perímetre de 40 polzades, llavors un costat ha de tenir un valor de 10. Amb això es justifica la declaració anterior. Si el primer rectangle és, de fet, un quadrat *, tots els costats han de ser iguals. A més, això tindria sentit per la raó que si un dels seus costats és 10, tots els altres costats han de ser
Trobeu el volum del sòlid la base de la qual és la regió del primer quadrant delimitat per y = x ^ 2 y = x2, y = 1 i l’eix Y i les seccions transversals perpendiculars a l’eix y són triangles equilàters. Volum = ???
Vegeu la resposta següent:
Gregory va dibuixar un rectangle ABCD en un pla de coordenades. El punt A és a (0,0). El punt B es troba a (9,0). El punt C es troba a (9, -9). El punt D és a (0, -9). Troba la longitud del CD lateral?
CD lateral = 9 unitats Si ignorem les coordenades y (el segon valor de cada punt), és fàcil dir que, atès que el CD lateral comença a x = 9 i acaba en x = 0, el valor absolut és 9: | 0 - 9 | = 9 Recordeu que les solucions als valors absoluts són sempre positives Si no enteneu per què això és, també podeu utilitzar la fórmula de distància: P_ "1" (9, -9) i P_ "2" (0, -9 ) En la següent equació, P_ "1" és C i P_ "2" és D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^