Resposta:
Explicació:
Ho sabem
Així per als vectors de la unitat
#color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk}, color (negre) {qquad hati xx hatk = -hatj}), (color (negre) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad hatj xx hatk = hati}), (color (negre) {hatk xx hati = hatj}, color (negre) {qquad hatk xx hatj = -hati}, color (negre) {qquad hatk xx hatk = vec0})) #
Una altra cosa que haureu de saber és que el producte creuat és distributiu, el que significa
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC # .
Necessitarem tots aquests resultats per a aquesta pregunta.
# 3, -1,2 xx 5,1, -3 #
# = (3hati - hatj + 2hatk) xx (5hati + hatj - 3hatk) #
# = color (blanc) ((color (negre) {qquad 3hati xx 5hati + 3hati xx hatj + 3hati xx (-3hatk)}), (color (negre) {- hatj xx 5hati - hatj xx hatj - hatj xx (- 3hatk)}), (color (negre) {+ 2hatk xx 5hati + 2hatk xx hatj + 2hatk xx (-3hatk)})) #
# = color (blanc) ((color (negre) {15 (vec0) + 3hatk + 9hatj}), (color (negre) {+ 5hatk qquad - vec0 quad + 3hati}), (color (negre) {quad + 10hatj quad - 2hati - 6 (vec0)}))
# = hati + 19hatj + 8hatk #
#= 1,19,8#
Quin és el producte creuat de [0,8,5] i [1,2, -4]?
[0,8,5] xx [1,2, -4] = [-42,5, -8] El producte creuat de vecA i vecB és donat per vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on theta és l'angle positiu entre vecA i vecB, i hatn és un vector unitari amb la direcció donada per la regla de la mà dreta. Per als vectors unitaris hati, hatj i hatk en les direccions de x, y i z respectivament, color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk} , color (negre) {qquad hati xx hatk = -hatj}), (color (negre) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad
Quin és el producte creuat de [-1,0,1] i [0,1,2]?
El producte creuat és = 〈- 1,2, -1〉 El producte creuat es calcula amb el determinant | (veci, vecj, veck), (d, e, f), (g, h, i) | on 〈d, e, f〉 i 〈g, h, i〉 són els 2 vectors Aquí, tenim veca = 〈- 1,0,1〉 i vecb = 〈0,1,2〉 Per tant, | (veci, vecj, veck), (-1,0,1), (0,1,2) | = veci | (0,1), (1,2) | -vecj | (-1,1), (0,2) | + veck | (-1,0), (0,1) | = veci (-1) -vecj (-2) + veck (-1) = 〈- 1,2, -1〉 = verificació vecc fent dos productes de punt 〈-1,2, -1〉. 〈- 1, 0,1〉 = 1 + 0-1 = 0 ,2 -1,2, -1〉. 〈0,1,2〉 = 0 + 2-2 = 0 Així, vecc és perpendicular a veca i vecb
Quin és el producte creuat de [-1,0,1] i [3, 1, -1]?
[-1,2, -1] Sabem que vecA xx vecB = || vecA || * || vecB || * sin (theta) hatn, on hatn és un vector unitari donat per la regla de la mà dreta. Així, per als vectors unitaris hati, hatj i hatk en la direcció de x, y i z respectivament, podem arribar als resultats següents. color (blanc) ((color (negre) {hati xx hati = vec0}, color (negre) {qquad hati xx hatj = hatk}, color (negre) {qquad hati xx hatk = -hatj}), (color (negre) ) {hatj xx hati = -hatk}, color (negre) {qquad hatj xx hatj = vec0}, color (negre) {qquad hatj xx hatk = hati}), (color (negre) {hatk xx hati = hatj}, color (negre) {qquad hat