Comencem primer la segona part:
quins valors de
Penseu en dos casos:
Cas 1:
Cas 2:
si
i, per tant, cal incloure-la
Tingueu en compte que els resultats serien bastant diferents si la condició hagués estat
Una manera de pensar Nombres reals és pensar en elles com a distàncies, una mesura de longitud comparable.
Els números es poden considerar com una col·lecció de conjunts en expansió:
-
Nombres naturals (o Nombre de comptadors): 1, 2, 3, 4, …
-
Números naturals i zero
-
Nombres enters: números naturals, zero i versió negativa dels nombres naturals …. -4, -3, -2, -1, 0, 1, 2, 3, 4, ….
-
Números racionals: els enters i tots els valors que es poden expressar com a relació de dos enters (fraccions).
-
Nombres reals: nombres racionals més números irracionals on els nombres irracionals són valors que existeixen com a longituds però que no es poden expressar com a fraccions (per exemple,
#sqrt (2) # ). -
Nombres complexos: nombres reals més números amb components que inclouen
#sqrt (-1) # (anomenats números imaginaris).
Suposeu que treballeu en un laboratori i necessiteu una solució de 15% d’àcid per dur a terme una prova determinada, però el vostre proveïdor només subministra una solució del 10% i una solució del 30%. Necessiteu 10 litres de la solució de 15% d’àcid?
Anem a treballar dient que la solució del 10% és x La solució del 30% serà de 10 x La solució desitjada del 15% conté 0,15 * 10 = 1,5 d’àcid. La solució del 10% proporcionarà 0,10 * x I la solució del 30% proporcionarà 0,30 * (10-x) So: 0,10x + 0,30 (10-x) = 1,5-> 0,10x + 3-0,30x = 1,5-> 3 -0.20x = 1.5-> 1.5 = 0.20x-> x = 7.5 Necessitareu 7,5 L de la solució del 10% i 2,5 L del 30%. Nota: podeu fer-ho d'una altra manera. Entre un 10% i un 30% és una diferència de 20. Cal augmentar del 10% al 15%. Aquesta és una diferència de 5.
Per dur a terme un experiment científic, els estudiants han de barrejar 90 ml d’una solució àcida del 3%. Tenen una solució d’1% i un 10% disponible. Quants ml de la solució al 1% i de la solució del 10% s'han de combinar per produir 90 ml de la solució del 3%?
Podeu fer-ho amb raons. La diferència entre l'1% i el 10% és de 9. Heu de pujar de l'1% al 3% - una diferència de 2. A continuació, haureu de ser present 2/9 de les coses més fortes, o en aquest cas de 20 ml (i de curs 70 ml de les coses més febles).
Utilitzeu el discriminant per determinar el nombre i el tipus de solucions que té l’equació? x ^ 2 + 8x + 12 = 0 A.no solució real B. solució real C. dues solucions racionals D. dues solucions irracionals
C. dues solucions racionals La solució a l'equació quadràtica a * x ^ 2 + b * x + c = 0 és x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In el problema considerat, a = 1, b = 8 i c = 12 Substituint, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 o x = (-8+ - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 i x = (-8 - 4) / 2 x = (- 4) / 2 i x = (-12) / 2 x = - 2 i x = -6