Resposta:
Explicació:
L’equació d’una línia a
#color (blau) "forma de intercepció de pendent" # és
#color (vermell) (| bar (ul (color (blanc) (a / a) color (negre) (y = mx + b) color (blanc) (a / a) |))) # # on m representa la inclinació i b, la y-intercepció.
El punt (0, -12) és on la línia creua l'eix Y i, per tant, la intercepció y és -12.
aquí
# m = -4 / 3 "i" b = -12 # Substituïu aquests valors per l’equació.
# rArry = -4 / 3x-12 "és l'equació"
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
Quan una força de 40-N, paral·lela a la inclinació i dirigida cap a la inclinació, s'aplica a una caixa en una inclinació sense fricció que és a 30º per sobre de l’horitzontal, l’acceleració de la caixa és de 2,0 m / s ^ 2, fins a la inclinació . La massa de la caixa és?
M ~ = 5,8 kg La força neta que puja per la inclinació és donada per F_ "net" = m * a F_ "xarxa" és la suma dels 40 N que forcen la inclinació i el component del pes de l’objecte, m * g, avall la inclinació. F_ "net" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Resolució de m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 N m * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 N m * (6,9 m / s ^ 2) = 40 N m = (40 N) / (6,9 m / s ^ 2) Nota: el Newton equival a kg * m / s ^ 2. (Consulteu F = ma per confirmar-ho.) M = (40 kg * cancel·la (m / s ^ 2)) / (4.49 cancel
Demostrar que donat una línia i un punt no en aquesta línia, hi ha exactament una línia que passa per aquest punt perpendicular a aquesta línia? Podeu fer-ho matemàticament o bé mitjançant la construcció (els antics grecs ho van fer)?
Mirar abaix. Suposem que la línia donada és AB, i el punt és P, que no és a AB. Ara, suposem, hem dibuixat un PO perpendicular a AB. Hem de demostrar que, Aquest PO és l'única línia que passa per P que és perpendicular a AB. Ara utilitzarem una construcció. Construïm un altre PC perpendicular a AB del punt P. Ara la prova. Tenim, OP perpendicular AB [No puc utilitzar el signe perpendicular, com anyoying] I, Also, PC perpendicular AB. Així doncs, OP || PC. [Tots dos són perpendiculars a la mateixa línia.] Ara tant OP com PC tenen el punt P comú i s