Resposta:
Explicació:
Nick està construint una caixa gran en forma de cuboide.
Superfície del cuboide =
Superfície del cuboide =
Superfície del cuboide =
Superfície del cuboide =
Superfície del cuboide =
Superfície del cuboide =
Superfície del cuboide =
Contraxapat necessari = Superfície del cuboide
Cal fer fusta contraplacada =
La longitud d'una caixa és de 2 centímetres menys que la seva alçada. l'amplada de la caixa és de 7 centímetres més que la seva alçada. Si la caixa tenia un volum de 180 centímetres cúbics, quina és la seva superfície?
Deixeu que l'alçada de la caixa sigui h cm Llavors la seva longitud serà (h-2) cm i la seva amplada serà (h + 7) cm, així que per la condició del problema (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 Per a h = 5 LHS es fa zero Per tant (h-5) és el factor de LHS, de manera que h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 Així l'alçada h = 5 cm Ara longitud = (5-2) = 3 cm Ample = 5 + 7 = 12 cm Així que la super
Hi ha 250 maons utilitzats per construir una paret de 20 peus d'alçada. Quants maons s'utilitzaran per construir una paret de 30 peus d'alçada?
375 maons. Es pot considerar que és una comparació directa entre dues quantitats diferents, és un exemple de PROPORCIÓ DIRECTA, perquè si augmenta el nombre de maons, augmenta l'alçada de la paret. Si la paret ha de ser de 30 peus, es necessitaran més maons. 250/20 = x / 30 20x = 250 xx 30 x = (250 xx 30) / 20 x = 375
Quina és la taxa de canvi de l’amplada (en peus / seg) quan l’alçada és de 10 peus, si l’alç està disminuint en aquell moment a una velocitat d’1 ft / seg.Un rectangle té una alçada canviant i un ample de canvi , però l’altura i l’amplada canvien de manera que l’àrea del rectangle sigui sempre de 60 peus quadrats?
La taxa de canvi de l’amplada amb el temps (dW) / (dt) = 0,6 "peus / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt ) = - 1 "peus / s" Així (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Així (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Així que quan h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "peus / s"