Resposta:
El producte de punt és
Explicació:
El producte de punt de
Per tant,
Com és el producte de punts
Els Lakers van aconseguir un total de 80 punts en un partit de bàsquet contra els Bulls. Els Lakers van fer un total de 37 cistelles de dos punts i tres punts. Quants tirs de dos punts van fer els Lakers? Escriviu un sistema d'equacions lineals que es poden utilitzar per resoldre-ho
Els Lakers van fer 31 punters i 6 triples. Sigui x el nombre de captures de dos punts realitzades i deixeu el nombre de tirs de tres punts realitzats. Els Lakers van obtenir un total de 80 punts: 2x + 3y = 80 Els Lakers van fer un total de 37 cistelles: x + y = 37 Aquestes dues equacions es poden resoldre: (1) 2x + 3y = 80 (2) x + y = 37 L'equació (2) dóna: (3) x = 37-y Substituint (3) a (1) dóna: 2 (37-y) + 3y = 80 74-2y + 3y = 80 y = 6 Ara només fem servir el equació més simple (2) per obtenir x: x + y = 37 x + 6 = 37 x = 31 Per tant, els Lakers van fer 31 punters i 6 triples.
El professor de matemàtiques us indica que la següent prova val 100 punts i conté 38 problemes. Les preguntes d’opció múltiple valen 2 punts cadascuna i els problemes de paraules valen 5 punts. Quants de cada tipus de pregunta hi ha?
Si assumim que x és el nombre de preguntes d’elecció múltiple, i y és el nombre de problemes de paraules, podem escriure un sistema d’equacions com: {(x + y = 38), (2x + 5y = 100):} Si nosaltres multipliqueu la primera equació per -2 obtenim: {(-2x-2y = -76), (2x + 5y = 100):} Ara si afegim les dues equacions obtenim només l’equació amb 1 desconegut (y): 3y = 24 => y = 8 Substituint el valor calculat a la primera equació obtenim: x + 8 = 38 => x = 30 La solució: {(x = 30), (y = 8):} significa que: la prova tenia 30 preguntes tipus test i problemes de 8 paraules.
El vostre professor us ofereix una prova de 100 punts que conté 40 preguntes. Hi ha preguntes de 2 punts i 4 punts en la prova. Quants de cada tipus de pregunta estan en prova?
Hi ha 10 preguntes de quatre punts i 30 preguntes de dos punts en la prova. Hi ha dues coses que cal tenir en compte en aquest problema: hi ha 40 preguntes sobre la prova, cadascuna amb dos o quatre punts. La prova val 100 punts. El primer que hem de fer per resoldre el problema és donar una variable a les nostres incògnites. No sabem quantes preguntes hi ha a la prova, concretament, quantes preguntes de dos i quatre punts. Anomenem el nombre de dues preguntes punt t i el nombre de quatre preguntes punt f. Sabem que el nombre total de preguntes és de 40, de manera que: t + f = 40 És a dir, el nombre de