Resposta:
Cada pas es mostra tan llarg. Passa per sobre dels bits que coneixes.
La base és 5 per a tots dos
Les potes més petites són de 9 cadascuna
Les cames més llargues són 18 cada un
Explicació:
De vegades, un esbós ràpid ajuda a detectar què fer
Per al triangle 1
Per al triangle 2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Per a l’equació (1) es resta
Per a l’equació (2) es resta
Conjunt
Anunci
Sostreure
Divideix els dos costats per
Però
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Substitut per
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Comproveu l’ús
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
La base d'un triangle isòsceles és de 16 centímetres i els costats iguals tenen una longitud de 18 centímetres. Suposem que augmentem la base del triangle a 19 mentre mantenim els costats constants. Quina és la zona?
Àrea = 145,244 centímetres ^ 2 Si necessitem calcular l'àrea segons el segon valor de la base, és a dir, 19 centímetres, només farem tots els càlculs amb aquest valor. Per calcular l'àrea del triangle isòsceles, primer cal trobar la mesura de la seva alçada. Quan tallem el triangle isòsceles per la meitat, obtindrem dos triangles dret idèntics amb base = 19/2 = 9,5 centímetres i hipotenusa = 18 centímetres. La perpendicular d’aquests triangles drets també serà l’altura del triangle isòsceles real. Podem calcular la longitud d’aques
La hipotenusa d'un triangle dret és de 10 polzades. Les longituds de les dues cames es donen per dos enters parells consecutius. Com trobeu les longituds de les dues cames?
6,8 El primer que cal abordar aquí és com expressar "dos sencers enters consecutius" algebraicament. 2x donarà un enter sencer si x també és un enter. El següent enter sencer, seguit de 2x, seria 2x + 2. Podem utilitzar-les com a longituds de les nostres cames, però hem de recordar que això només serà vàlid si x és un enter (positiu). Apliqueu el teorema de Pitàgor: (2x) ^ 2 + (2x + 2) ^ 2 = 10 ^ 2 4x ^ 2 + 4x ^ 2 + 8x + 4 = 100 8x ^ 2 + 8x-96 = 0 x ^ 2 + x- 12 = 0 (x + 4) (x-3) = 0 x = -4,3 Així, x = 3 ja que les longituds laterals del triangl
La longitud de la base d’un triangle isòsceles és de 4 polzades menys que la longitud d’un dels dos costats iguals dels triangles. Si el perímetre és de 32, quines són les longituds de cadascun dels tres costats del triangle?
Els costats són 8, 12 i 12. Podem començar creant una equació que pugui representar la informació que tenim. Sabem que el perímetre total és de 32 polzades. Podem representar cada costat amb parèntesi. Com sabem que els altres dos costats, a més de la base, són iguals, podem utilitzar-lo per a nosaltres. La nostra equació sembla així: (x-4) + (x) + (x) = 32. Podem dir això perquè la base és 4 menor que els altres dos costats, x. Quan resolem aquesta equació, obtenim x = 12. Si el connecteu per cada costat, obtindrem 8, 12 i 12. Quan s’afegeixi, s’ac