Resposta:
Explicació:
En resoldre problemes algebraics, el primer que hem de fer és definir una variable per a coses que no sabem. En aquest problema, no coneixem cap dels enters, de manera que se'ls assigna una variable.
Tenim el primer nombre sencer
La il·lustració d'aquest concepte, considerem els enters
Se'ns diu que la suma dels nostres tres enters és
Resoldre aquesta equació és bastant senzill:
Això vol dir que el nostre primer nombre sencer és
La suma de tres enters sers consecutius és 258. Com trobeu els tres enters?
"Els nombres enters consecutius són 85,86,87" n: "el primer nombre" n + 1: "el segon nombre" n + 2: "el tercer nombre" n + (n + 1) + (n + 2) = 258 3n + 3 = 258 3n = 258-3 3n = 255 n = 255/3 n = 85 n + 1 = 85 + 1 = 86 n + 2 = 85 + 2 = 87
Es poden representar tres nombres enters consecutius per n, n + 1 i n + 2. Si la suma de tres enters consecutius és 57, quins són els enters?
18,19,20 La suma és l'addició del nombre de manera que la suma de n, n + 1 i n + 2 es pot representar com, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 de manera que el nostre primer nombre sencer és de 18 (n) el nostre segon és de 19, (18 + 1) i el nostre tercer és de 20, (18 + 2).
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =