El discriminant és part de la fórmula quadràtica.
Fórmula quadràtica
Discriminant
El discriminant us indica el nombre i els tipus de solucions a una equació quadràtica.
La funció f és tal que f (x) = a ^ 2x ^ 2-ax + 3b per x <1 / (2a) On a i b són constants per al cas on a = 1 i b = -1 Trobeu f ^ - 1 (mireu i trobeu el seu domini conec el domini de f ^ -1 (x) = abast de f (x) i és -13/4 però no sé la direcció del signe de desigualtat?
Mirar abaix. rang ^ 2x ^ 2-ax + 3b x ^ 2-x-3: posar en forma y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Valor mínim -13/4 Això passa a x = 1/2 Així l'interval és (- 13/4, oo) f ^ (- 1) (x) x = i ^ 2-i-3 i ^ 2-i- (3-x) = 0 Utilitzant la fórmula quadràtica: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Amb una mica de pensament podem veure que per al domini tenim la inversa requerida és : f ^ (- 1) (x) = (1-sqrt (4x +
'L varia conjuntament com una arrel quadrada de b, i L = 72 quan a = 8 i b = 9. Trobeu L quan a = 1/2 i b = 36? Y varia conjuntament com el cub de x i l'arrel quadrada de w, i Y = 128 quan x = 2 i w = 16. Trobeu Y quan x = 1/2 i w = 64?
L = 9 "i" y = 4> "la declaració inicial és" Lpropasqrtb "per convertir a una equació multiplicar per k la constant de variació" rArrL = kasqrtb "per trobar k usa les condicions donades" L = 72 "quan "a = 8" i "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" equació és "color (vermell) (barra (ul (| color (blanc) ( 2/2) color (negre) (L = 3asqrtb) color (blanc) (2/2) |)) "" quan "a = 1/2" i "b = 36" L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 colors (blau) "---------------