Resposta:
o bé
Explicació:
Com que la línia donada en el problema està en la forma d’intercepció de talus que sabem que la inclinació d’aquesta línia és
La forma d’interconnexió de pendent d’una equació lineal és:
On?
Aquest és un problema de mitjana ponderada.
Dues línies perpendiculars tenen una inclinació inversa negativa de l’altra.
La línia perpendicular a una línia amb pendent
Per tant, la línia que busquem té una inclinació de
Ara podem utilitzar la fórmula de la inclinació puntual per trobar l’equació de la línia que busquem.
La fórmula de la inclinació puntual indica:
On?
Podem substituir el pendent que calculem i el punt que ens van donar per donar l’equació que busquem:
Si volem posar això en forma d’interconnexió de pendents, podem resoldre'ls
L’equació d’una línia és 2x + 3y - 7 = 0, trobem: - (1) pendent de la línia (2) l’equació d'una línia perpendicular a la línia donada i que passa per la intersecció de la línia x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 color (blanc) ("ddd") -> color (blanc) ("ddd") y = 3 / 2x + 1 Primera part de molts detalls que demostren com funcionen els primers principis. Un cop acostumats a aquestes i utilitzar dreceres, utilitzaràs molt menys línies. color (blau) ("Determineu la intercepció de les equacions inicials") x-y + 2 = 0 "" ....... Equació (1) 3x + y-10 = 0 "" .... Equació ( 2) Restar x dels dos costats de l'Eqn (1) donant -y + 2 = -x Multiplica els dos costats per (-1) + y-2 = + x "" .......... Equació (1_a ) Utilitzant Eqn (1_a
L’equació de la línia QR és y = - 1/2 x + 1. Com s’escriu una equació d’una línia perpendicular a la línia QR en forma d’interconnexió de talus que conté el punt (5, 6)?
Vegeu un procés de solució a continuació: en primer lloc, hem de trobar la inclinació del per als dos punts del problema. La línia QR està en forma d’interconnexió de talusos. La forma d’interconnexió d’una equació lineal és: y = color (vermell) (m) x + color (blau) (b) On el color (vermell) (m) és el pendent i el color (blau) (b) és el valor d’interconnexió y. y = color (vermell) (- 1/2) x + color (blau) (1) Per tant, la inclinació del QR és: color (vermell) (m = -1/2) A continuació, anomenem el pendent per a la línia perpendicular. a aqu
La línia L té l'equació 2x-3y = 5 i la Línia M passa pel punt (2, 10) i és perpendicular a la línia L. Com es determina l'equació de la línia M?
En forma de punt de pendent, l’equació de la línia M és y-10 = -3 / 2 (x-2). En forma d’interconnexió de talus, és y = -3 / 2x + 13. Per tal de trobar el pendent de la línia M, primer hem de deduir el pendent de la línia L. L'equació de la línia L és 2x-3y = 5. Això és en forma estàndard, que no ens explica directament la inclinació de L. Podem reordenar aquesta equació, però, en forma d’interconnexió de talus resolent y: 2x-3y = 5 color (blanc) (2x) -3y = 5-2x "" (restar 2x dels dos costats) color (blanc) (2x-3) y = (5-2x) /