Resposta:
(0.5,7.5)
Explicació:
La quantitat de punts entre -3 i 4 és 7 (ara estem mirant l'eix X).
A mig camí hi ha 0,5 perquè 7 dividit per 2 és 3,5. Així -3 + 3,5 és igual a 0,5.
La quantitat de punts entre 5 i 10 és de 5 (ara veiem l’eix Y).
La meitat del camí és 7,5 perquè 5 dividits per 2 són 2,5. Així, 5 + 2,5 és de 7,5.
Posa-ho tot junt …
(0.5,7.5)
Sigui P (x_1, y_1) un punt i sigui l la línia amb l'equació ax + per + c = 0.Mostra la distància d de P-> l donada per: d = (ax_1 + per_1 + c) / sqrt (a ^ 2 + b ^ 2)? Trobeu la distància d del punt P (6,7) de la línia l amb l’equació 3x + 4y = 11?
D = 7 Deixem l '> a x + b y + c = 0 i p_1 = (x_1, y_1) un punt no sobre l. Suposant que b ne 0 i crida d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 després de substituir y = - (a x + c) / b a d ^ 2 tenim d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. El següent pas és trobar el mínim d ^ 2 pel que fa a x, de manera que trobarem x tal que d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Això ocorre per x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Ara, substituint aquest valor a d ^ 2 obtenim d ^ 2 = (c) + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) d = (c + a x_1 + b y_1) / sqrt (a
Un segment de línia té punts finals a (a, b) i (c, d). El segment de línia es dilata per un factor de r al voltant (p, q). Quins són els nous punts finals i la longitud del segment de línia?
(a, b) a ((1-r) p + ra, (1-r) q + rb), (c, d) a ((1-r) p + rc, (1-r) q + rd), nova longitud l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Tinc una teoria que totes aquestes preguntes són aquí, de manera que hi ha alguna cosa que els principiants facin. Vaig a fer el cas general aquí i veure què passa. Traduïm el pla de manera que el punt de dilatació P es mapeja a l'origen. A continuació, la dilatació escala les coordenades per un factor de r. A continuació, traduïm el pla de tornada: A '= r (A - P) + P = (1-r) P + r A Aquesta és l'equació paramètrica d'u
Els punts (–9, 2) i (–5, 6) són punts finals del diàmetre d'un cercle Quina és la longitud del diàmetre? Quin és el punt central del cercle? Donat el punt C que heu trobat a la part (b), indiqueu el punt simètric de C al voltant de l’eix x
D = sqrt (32) = 4sqrt (2) ~~ 5.66 centre, C = (-7, 4) punt simètric sobre l'eix X: (-7, -4) Donat: punts finals del diàmetre d'un cercle: (- 9, 2), (-5, 6) Utilitzeu la fórmula de distància per trobar la longitud del diàmetre: d = sqrt ((y_2 - y_1) ^ 2 + (x_2 - x_1) ^ 2) d = sqrt ((- 9 - -5) ^ 2 + (2 - 6) ^ 2) = sqrt (16 + 16) = sqrt (32) = sqrt (16) sqrt (2) = 4 sqrt (2) ~~ 5.66 Utilitzeu la fórmula del punt mitjà per trobar el centre: ((x_1 + x_2) / 2, (y_1 + y_1) / 2): C = ((-9 + -5) / 2, (2 + 6) / 2) = (-14/2, 8/2) = (-7, 4) Utilitzeu la regla de coordenades per a la reflexi