Resposta:
El perímetre és
Explicació:
Primer trobeu les longituds dels costats del rectangle
Utilitzeu la informació sobre
Comenceu per trobar una manera de descriure cada costat utilitzant el llenguatge matemàtic
Deixar
Ample………
La zona és el producte d’aquests dos costats
ample
..
1) Esborreu els parèntesis distribuint el fitxer
2) Divideix els dos costats per
3) Tome les arrels quadrades dels dos costats
L’ample no pot ser un nombre negatiu, així que
Resposta:
L’amplada del rectangle és
Per tant, la longitud ha de ser
Utilitzeu ara les longituds dels costats del rectangle per trobar el seu perímetre
El perímetre és la suma dels quatre costats
…..
1) Esborreu els parèntesis
2) Afegeix
Comproveu
1) Els costats s'han de multiplicar fins a una àrea de
La longitud d'un rectangle és de 3,5 polzades més que la seva amplada. El perímetre del rectangle és de 31 polzades. Com es troba la longitud i l’amplada del rectangle?
Longitud = 9,5 ", Ample = 6" Comenceu amb l’equació del perímetre: P = 2l + 2w. A continuació, empleneu la informació que coneixem. El perímetre és de 31 "i la longitud és igual a l’amplada + 3,5". Per això: 31 = 2 (w + 3,5) + 2w perquè l = w + 3,5. A continuació, solucionem per w dividint-ho tot per 2. Es deixa llavors amb 15,5 = w + 3,5 + w. A continuació, resteu 3.5 i combineu el w per obtenir: 12 = 2w. Finalment, dividiu de nou per 2 per trobar w i obtenim 6 = w. Això ens indica que l’amplada és igual a 6 polzades, la meitat del proble
La longitud d’un rectangle és 3 vegades la seva amplada. Si la longitud s’incrementés en 2 polzades i l’amplada per 1 polzada, el nou perímetre seria de 62 polzades. Quina és l'amplada i la longitud del rectangle?
La longitud és de 21 i l'amplada és de 7 Utilitzeu l per a longitud i w per a amplada Primer es dóna que l = 3w Nova longitud i amplada és l + 2 i w + 1 respectivament. També el nou perímetre és 62. Així, l + 2 + l + 2 + w + 1 + w + 1 = 62 o, 2l + 2w = 56 l + w = 28 Ara tenim dues relacions entre l i w Substituïm el primer valor de l en la segona equació. Obtindrem, 3w + w = 28 4w = 28 w = 7 Posant aquest valor de w en una de les equacions, l = 3 * 7 l = 21 Així la longitud és 21 i l'amplada és 7
La longitud d’un rectangle és de 7 peus més gran que l’amplada. El perímetre del rectangle és de 26 peus. Com escriviu una equació per representar el perímetre en termes de la seva amplada (w). Quina és la longitud?
Una equació que representa el perímetre en termes de la seva amplada és: p = 4w + 14 i la longitud del rectangle és de 10 peus. Que l’amplada del rectangle sigui w. Deixeu que la longitud del rectangle sigui l. Si la longitud (l) és de 7 peus més llarga que l'amplada, llavors la longitud es pot escriure en termes de l'amplada com: l = w + 7 La fórmula del perímetre d'un rectangle és: p = 2l + 2w on p és el perímetre, l és la longitud i w és l’amplada. La substitució de w + 7 per a l dóna una equació per representar el perímetre