Resposta:
Hi ha diverses maneres d’escriure-la. Tots capturen la mateixa idea.
Explicació:
Per
A continuació es mostra la gràfica de la funció f (x) = (x + 2) (x + 6). Quina afirmació sobre la funció és certa? La funció és positiva per a tots els valors reals de x on x> –4. La funció és negativa per a tots els valors reals de x on –6 <x <–2.
La funció és negativa per a tots els valors reals de x on –6 <x <–2.
Es mostra el gràfic d’h (x). Sembla que el gràfic és continu, on canvia la definició. Demostrar que h és, de fet, continuat per trobar els límits dret i esquerre i que mostra que es compleix la definició de continuïtat?
Si us plau, consulteu l'explicació. Per mostrar que h és continu, hem de comprovar la seva continuïtat a x = 3. Sabem que, h serà cont. a x = 3, si i només si, lim_ (x a 3-) h (x) = h (3) = lim_ (x a 3+) h (x) ............ ................... (ast). As x a 3-, x lt 3:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x a 3-) h (x) = lim_ (x a 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x a 3-) h (x) = 4 ............................................ .......... (ast ^ 1). De manera similar, lim_ (x a 3+) h (x) = lim_ (x a 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x a 3+) h (x) = 4 .............
Com s'utilitza la definició de límit de la derivada per trobar la derivada de y = -4x-2?
-4 La definició de derivada es presenta de la manera següent: lim (h-> 0) (f (x + h) -f (x)) / h Aplicarem la fórmula anterior a la funció donada: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Simplificació per h = lim (h-> 0) (- 4) = -4