Quan es diferencia una exponencial amb una base que no sigui
#f (x) = x * lnx / ln5 #
Ara, diferenciar i aplicar la regla del producte:
# d / dxf (x) = d / dx x * lnx / ln5 + x * d / dx lnx / ln5 #
Sabem que la derivada de
# d / dxf (x) = lnx / ln5 + x / (xln5) #
Simplificació dels rendiments:
# d / dxf (x) = (lnx + 1) / ln5 #
Demostreu que (1 + Log_5 8 + Log_5 2) / log_5 6400 = 0.5 Tingueu en compte que el nombre base de cada registre és de 5 i no 10. Aconsegueix contínuament 1/80, algú pot ajudar-lo?
1/2 6400 = 25 * 256 = 5 ^ 2 * 2 ^ 8 => log (6400) = log (5 ^ 2) + log (2 ^ 8) = 2 + 8 log (2) log (8) = log (2 ^ 3) = 3 log (2) => (1 + log (8) + log (2)) / log (6400) = (1 + 4 log (2)) / (2 + 8log (2)) = 1/2
Quina és la segona derivada de x / (x-1) i la primera derivada de 2 / x?
Pregunta 1 Si f (x) = (g (x)) / (h (x)) llavors per la regla quocient f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Així doncs, si f (x) = x / (x-1) llavors la primera derivada f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2) i la segona derivada és f '' (x) = 2x ^ -3 pregunta 2 Si f (x) = 2 / x es pot tornar a escriure com f (x) = 2x ^ -1 i utilitzar procediments estàndard per prendre la derivada f '(x) = -2x ^ -2 o, si preferiu f' (x) = - 2 / x ^ 2
Quina és la primera derivada i la segona derivada de x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2 per trobar la primera derivada simplement hem d’utilitzar tres regles: 1. Regla de poder d / dx x ^ n = nx ^ (n-1) ) 2. Regla constant d / dx (c) = 0 (on c és un enter i no una variable) 3. Regla de suma i diferència d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] la primera derivada dóna com a resultat: 4x ^ 3-0 el que simplifica a 4x ^ 3 per trobar la segona derivada, hem de derivar la primera derivada aplicant de nou la regla de potència que resulta en : 12x ^ 3 podeu continuar si voleu: tercer derivat = 36x ^ 2 quart derivat = 72x cinqu