Es tracta simplement de la divisió del treball, es pot dir per explicar per què el cervell es divideix en dos hemisferis cerebrals.
El cerebrum es divideix en dos hemisferis cerebrals per fissures longitudinals i estan connectats per Corpus callosum.
L’escorça cerebral té molts plecs que augmenten la superfície del cervell és un indicador d’una major evolució en nosaltres.
Funcionalment, l’hemisferi cerebral esquerre controla la part dreta del cos i els controls de l’hemisferi cerebral dret del costat esquerre del cos.
El nombre d’un any passat es divideix per 2 i el resultat es posa al revés i es divideix per 3, a continuació, esquerra dreta i dividit per 2. Llavors, els dígits del resultat s’inverteixen per fer 13. Què és l’any passat?
Color (vermell) (1962) Aquests són els passos descrits: {: ("any", color (blanc) ("xxx"), rarr ["resultat" 0]), (["resultat" 0] div 2 ,, rarr ["resultat" 1]), (["resultat" 1 "" cap per avall ",, rarr [" resultat "2]), ([" resultat "2]" dividit per "3,, rarr [" resultat "3]), ((" cap a la dreta esquerra cap amunt ") ,, (" cap canvi ")), ([" resultat "3] div 2,, rarr [" resultat "4]), ([" resultat ") 4] "dígits revertits" ,, rarr ["result
Cert o fals ? Si 2 divideix gcf (a, b) i 2 divideix gcf (b, c) llavors 2 divideix gcf (a, c)
Si us plau mireu més a baix. GCF de dos nombres, per exemple x i y, (de fet, encara més) és un factor comú que divideix tots els números. L’escriurem com a gcf (x, y). Tanmateix, tingueu en compte que el GCF és el factor comú més gran i que cada factor d’aquests números és un factor de GCF també. També tingueu en compte que si z és un factor de y i y és un factor de x, llavors z també és un factor o x. Ara, ja que 2 divideix gcf (a, b), vol dir que 2 també divideix a i b i per tant a i b són iguals. De manera similar, com 2 divideix g
Quan un polinomi es divideix per (x + 2), la resta és -19. Quan el mateix polinomi es divideix per (x-1), la resta és 2, com es determina la resta quan el polinomi es divideix per (x + 2) (x-1)?
Sabem que f (1) = 2 i f (-2) = - 19 del teorema restant troben ara la resta de polinomi f (x) quan es divideix per (x-1) (x + 2) la resta serà de la forma Ax + B, perquè és la resta després de la divisió per un quadràtic. Ara podem multiplicar els temps divisors del quocient Q ... f (x) = Q (x-1) (x + 2) + Ax + B A continuació, inseriu 1 i -2 per a x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolent aquestes dues equacions, obtenim A = 7 i B = -5 Resta = Ax + B = 7x-5