Resposta:
Explicació:
Donat;
Resposta:
Demostrar un enfocament intel·ligent i intel·ligent.
Explicació:
Anem a fer un tret "informat" a la foscor.
L’últim dígit és 4 i ho sabem
per tant, podríem tenir 2 com el nostre últim dígit de l’arrel. Utilitzant ? per representar el següent dígit a l'esquerra que tenim
Penseu en el
Posem la nostra conjectura junts
Comproveu - dividir els 72 a 70 + 2
Resposta:
Explicació:
Donat
Primer trobeu la factorització primera:
#5184 = 2 * 2592#
#color (blanc) (5184) = 2 ^ 2 * 1296 #
#color (blanc) (5184) = 2 ^ 3 * 648 #
#color (blanc) (5184) = 2 ^ 4 * 324 #
#color (blanc) (5184) = 2 ^ 5 * 162 #
#color (blanc) (5184) = 2 ^ 6 * 81 #
#color (blanc) (5184) = 2 ^ 6 * 3 * 27 #
#color (blanc) (5184) = 2 ^ 6 * 3 ^ 2 * 9 #
#color (blanc) (5184) = 2 ^ 6 * 3 ^ 3 * 3 #
#color (blanc) (5184) = 2 ^ 6 * 3 ^ 4 #
Tingueu en compte que tots els factors es produeixen un nombre parell de vegades, de manera que l’arrel quadrada és exacta …
#sqrt (5184) = sqrt (2 ^ 6 * 3 ^ 4) = 2 ^ 3 * 3 ^ 2 = 72 #
Què és [5 (arrel quadrada de 5) + 3 (arrel quadrada de 7)] / [4 (arrel quadrada de 7) - 3 (arrel quadrada de 5)]?
(159 + 29sqrt (35)) / 47 color (blanc) ("XXXXXXXX") assumint que no he fet cap error aritmètic (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt) (7)) - 3 (sqrt (5)) Racionalitzeu el denominador multiplicant pel conjugat: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) / (4 (sqrt (7)) + 3 (sqrt (5))) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Què és (arrel quadrada 2) + 2 (arrel quadrada 2) + (arrel quadrada 8) / (arrel quadrada 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 es pot expressar com a color (vermell) (2sqrt2 l'expressió ara es converteix en: (sqrt (2) + 2sqrt (2) + color (vermell) (2sqrt2) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 i sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Quina és l'arrel quadrada de 7 + arrel quadrada de 7 ^ 2 + arrel quadrada de 7 ^ 3 + arrel quadrada de 7 ^ 4 + arrel quadrada de 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) El primer que podem fer és cancel·lar les arrels amb les potències parells. Des de: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 per a qualsevol nombre, podem dir que sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ara, 7 ^ 3 poden ser reescrits com 7 ^ 2 * 7, i que 7 ^ 2 pot sortir de l’arrel! El mateix s'aplica a 7 ^ 5 però es reescriu com 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Ara