Resposta:
La norma és
Explicació:
Utilitzant la propietat distributiva de la multiplicació:
Donat:
Multipliqueu el contingut de cada parèntesi pel terme a l'esquerra ia l'exterior.
He agrupat els productes entre claudàtors perquè pugueu veure més fàcilment les conseqüències de cada multiplicació.
Eliminació dels claudàtors
Recopilació de termes similars
Per tant, la norma és
Què és el potencial estàndard? El potencial estàndard per a una substància determinada és constant (potencial estàndard de zinc = -0,76 v)? Com es pot calcular el mateix?
Mirar abaix. > Hi ha dos tipus de potencial estàndard: potencial de cèl·lules estàndard i potencial mitjà de cèl·lules. Potencial cel·lular estàndard El potencial cel·lular estàndard és el potencial (voltatge) d’una cèl·lula electroquímica en condicions estàndard (concentracions d’1 mol / L i pressions d’1 atm a 25 ° C). A la cel·la anterior, les concentracions de "CuSO" _4 i "ZnSO" _4 són cada 1 mol / L, i la lectura de la tensió al voltímetre és el potencial cel·lular estàndard. P
Quina és la forma estàndard d'un polinomi 10x ^ 3 + 14x ^ 2 - 4x ^ 4 + x?
Forma estàndard: -4x ^ 4 + 10x ^ 3 + 14x ^ 2 + x Nota: He modificat la pregunta de manera que el terme 4x4 es convertís en 4x ^ 4; Espero que això sigui el que es pretenia. Un polinomi en forma estàndard està disposat de manera que els seus termes estiguin en seqüència de graus descendent. {: ("terme", color (blanc) ("XXX"), "grau"), (10x ^ 3,, 3), (14x ^ 2,, 2), (-4x ^ 4,, 4), (x ,, 1):} En seqüència de graus descendent: {: ("terme", color (blanc) ("XXX"), "grau"), (-4x ^ 4,, 4), (10x ^ 3, , 3), (14x ^ 2,, 2), (x ,, 1)
Quan un polinomi es divideix per (x + 2), la resta és -19. Quan el mateix polinomi es divideix per (x-1), la resta és 2, com es determina la resta quan el polinomi es divideix per (x + 2) (x-1)?
Sabem que f (1) = 2 i f (-2) = - 19 del teorema restant troben ara la resta de polinomi f (x) quan es divideix per (x-1) (x + 2) la resta serà de la forma Ax + B, perquè és la resta després de la divisió per un quadràtic. Ara podem multiplicar els temps divisors del quocient Q ... f (x) = Q (x-1) (x + 2) + Ax + B A continuació, inseriu 1 i -2 per a x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Resolent aquestes dues equacions, obtenim A = 7 i B = -5 Resta = Ax + B = 7x-5