Resposta:
Explicació:
# • color (blanc) (x) "les línies paral·leles tenen pendents iguals" #
# "calculeu el pendent (m) de la línia que passa" (-1,4) #
# "i" (2,3) "utilitzant el" color (blau) "fórmula de degradat" #
#color (vermell) (barra (ul (| color (blanc) (2/2) color (negre) (m = (y_2-y_1) / (x_2-x_1)) color (blanc) (2/2) |))) #
# "deixa" (x_1, y_1) = (- 1,4) "i" (x_2, y_2) = (2,3) #
# rArrm = (3-4) / (2 - (- 1)) = (- 1) / 3-1 / 3 #
# "expressant l'equació en" color (blau) "forma punt-pendent" #
# • color (blanc) (x) y-y_1 = m (x-x_ 1) #
# "amb" m = -1 / 3 "i" (x_1, y_1) = (4, -2) #
#y - (- 2) = - 1/3 (x-4) #
# rArry + 2 = -1 / 3 (x-4) #
# "distribució i simplificació de les donacions" #
# y + 2 = -1 / 3x + 4/3 #
# rArry = -1 / 3x-2 / 3larrcolor (vermell) "en forma de intercepció de pendent" #
L’equació de la línia CD és y = 2x - 2. Com s’escriu una equació d’una línia paral·lela a la línia CD en forma d’intersecció de talus que conté el punt (4, 5)?
Y = -2x + 13 Vegeu explicacions Aquesta és una pregunta de resposta llarga.CD: "" y = -2x-2 El paral·lel significa la nova línia (l'anomenarem AB) tindrà la mateixa inclinació que el CD. m = -2:. y = -2x + b Ara connecteu el punt donat. (x, y) 5 = -2 (4) + b Resoldre per b. 5 = -8 + b 13 = b Així doncs, l'equació de AB és y = -2x + 13. Ara comproveu y = -2 (4) +13 y = 5 Per tant (4,5) és a la línia y = -2x + 13
La línia L té l'equació 2x- 3y = 5. La línia M passa pel punt (3, -10) i és paral·lela a la línia L. Com es determina l'equació de la línia M?
Vegeu un procés de solució a continuació: la Línia L es troba en forma estàndard lineal. La forma estàndard d’una equació lineal és: color (vermell) (A) x + color (blau) (B) y = color (verd) (C) On, si és possible, color (vermell) (A), color (blau) (B) i el color (verd) (C) són enters, i A no és negatiu, i, A, B i C no tenen factors comuns que no siguin 1 color (vermell) (2) x - color (blau) (3) y = color (verd) (5) La inclinació d'una equació en forma estàndard és: m = -color (vermell) (A) / color (blau) (B) Substituint els valors de l'equa
Com trobeu tots els punts de la corba x ^ 2 + xy + y ^ 2 = 7 on la línia tangent és paral·lela a l'eix x, i el punt on la línia tangent és paral·lela a l'eix Y?
La línia tangent és paral·lela a l'eix x quan el pendent (d'aquí dy / dx) és zero i és paral·lel a l'eix y quan el pendent (de nou, dy / dx) va a oo o -oo Començarem per trobar dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Ara, dy / dx = 0 quan el nuimerator és 0, sempre que això no faci també el denominador 0. 2x + y = 0 quan y = -2x Tenim ara dues equacions: x ^ 2 + xy + y ^ 2 = 7 y = -2x Resoldre (per substitució) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x