Resposta:
S'ha previst que la població total arribi als 8.400 milions a mitjan el 2030 i als 9.600 milions a mitjan el 2050 i representa una corba.
Explicació:
- El creixement global de la població humana és d'aproximadament 75 milions anuals. És un 1,1% anual.
- Aquesta població global ha crescut des dels 1.000 milions en 1800 fins als 7.000 milions el 2012.
- S'espera que continuï creixent i es prevegi que la població total s’aconsegueixi als 8.400 milions a mitjan el 2030 i als 9.600 milions a mitjan el 2050.
- Aquesta taxa de creixement representa una forma de corba.
La funció p = n (1 + r) ^ t dóna la població actual d’una ciutat amb una taxa de creixement de r, t anys després de la població n. Quina funció es pot utilitzar per determinar la població de qualsevol ciutat que tingués una població de 500 persones fa 20 anys?
La població es donaria per P = 500 (1 + r) ^ 20 Com que la població de fa 20 anys era una taxa de creixement de 500 (la ciutat és r (en fraccions - si és r% la fa r / 100) i ara (és a dir, 20 anys després la població es donaria per P = 500 (1 + r) ^ 20
La població d’un milió creix a un ritme del 5% cada any. La població el 1990 era de 400.000. Quina seria la població actual prevista? En quin any prediríem que la població arribés als 1.000.000?
11 d'octubre de 2008. La taxa de creixement durant n anys és P (1 + 5/100) ^ n El valor inicial de P = 400 000, l'1 de gener de 1990. Així, tenim 400000 (1 + 5/100) ^ n heu de determinar n per 400000 (1 + 5/100) ^ n = 1000000 Dividiu els dos costats per 400000 (1 + 5/100) ^ n = 5/2 Prenent registres n (105/100) = ln (5/2 ) n = ln 2,5 / ln 1,05 n = 18,780 anys progressió fins a 3 decimals Així l’any serà el 1990 + 18.780 = 2008.78 La població arriba als 1 milions d’11 d'octubre de 2008.
En condicions ideals, una població de conills té una taxa de creixement exponencial del 11,5% per dia. Penseu en una població inicial de 900 conills, com trobeu la funció de creixement?
F (x) = 900 (1.115) ^ x La funció de creixement exponencial aquí pren la forma y = a (b ^ x), b> 1, a representa el valor inicial, b representa la taxa de creixement, x és el temps transcorregut en dies. En aquest cas, se'ns dóna un valor inicial de a = 900. A més, se'ns diu que la taxa de creixement diari és de l'11,5%. Bé, en equilibri, la taxa de creixement és zero per cent, IE, la població es manté sense canvis en el 100%. En aquest cas, però, la població creix un 11,5% des de l’equilibri fins al (100 + 11,5)%, o el 111,5% reescrit com a decimal