Resposta:
Explicació:
Per tant, sabem que:
Ara utilitzem la substitució per trobar el 10è terme:
Posar-ho en 2 ens proporciona:
El 20è terme d’una sèrie aritmètica és log20 i el 32è terme és log32. Exactament un terme en la seqüència és un nombre racional. Quin és el nombre racional?
El desè terme és log10, que és igual a 1. Si el 20è terme és log 20, i el 32è terme és log32, llavors es dedueix que el desè terme és log10. Log10 = 1. 1 és un nombre racional. Quan s'escriu un registre sense una "base" (el subíndex després del registre), hi ha una base de 10. Es coneix com el "registre comú". La base de registre 10 de 10 és igual a 1, ja que 10 a la primera potència és una. Una cosa útil a recordar és "la resposta a un registre és l'exponent". Un nombre racional és un n
Els termes 2, 6 i 8 d’una progressió aritmètica són tres termes successius d’una geometria. Com es pot trobar la relació comuna de G.P i obtenir una expressió per al nè terme del G.P?
El meu mètode ho soluciona! Reescriptura total r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Per fer la diferència òbvia entre les dues seqüències, utilitzo la notació següent: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Eqn (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Eqn (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Eqn (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + color (blanc) (5) d = t larr "Restar&qu
Els primers quatre termes d’una seqüència aritmètica són 21 17 13 9 Trobem en termes de n, una expressió per al nè terme d’aquesta seqüència?
El primer terme de la seqüència és a_1 = 21. La diferència comuna en la seqüència és d = -4. Heu de tenir una fórmula per al terme general, a_n, en termes del primer terme i de la diferència comuna.