Resposta:
Depenent de la correcció de la pregunta:
probablement la resposta prevista
Explicació:
Deixar
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Opció 1: la línia hauria d’haver llegit: 5 menys dimes que els nickels.
Se'ns diu
1
2
3
Així que podem substituir
(ja que això no és probable, rebutgem l’opció 1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Opció 2: la línia hauria d’haver llegit: menys cinc punts que dimes.
Se'ns diu
1
2
3
Així que podem substituir
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Per descomptat, és possible que un dels "nickels" en
hauria d’haver estat "trimestres" … però deixem de fumar mentre tinguem una resposta raonable.
Jill guanya un salari anual de 40.000 dòlars i una comissió del 15% sobre les vendes totals. Shonda obté un salari anual de 55.000 dòlars més una comissió del 10% sobre les vendes totals. Si Jill i Shonda tinguin vendes de 750.000 dòlars EUA, quina quantitat d’ingressos totals guanyi Jill per a l'any?
Jill va obtenir 22.500 dòlars més d’ingressos totals de l’any. La fórmula de l’ingrés total és: T = b + r * s on T és l’ingrés total, b és el salari base, r és la taxa de comissió i s són les vendes. Recordeu que el x% es pot escriure com a x / 100. Primer, calculem els ingressos totals de Jill i l'anomenem J: J = 40.000 $ +15 / 100 * $ 750.000 J = 40.000 $ + 15 * $ 7.500 J = $ 40.000 + $ 112.500 J = $ 152.500 Llavors també podem calcular els ingressos totals de Shonda i cridar-lo S: S = $ 55,000 + 10/100 * $ 750,000 S = $ 55,000 + 10 * $ 7,500 S = $ 55,000 +
Paul té 4,75 $ en monedes. Té alguns quarts, un de deu centaus més que quarts, i tres menys que cinc quarts. Quantes dimes té?
Vegeu un procés de solució a continuació: en primer lloc, anomenem algunes variables: anomenem el nombre de trimestres de Paul: q anomenem el nombre de dimes de Paul: d anomenem el nombre de nickles que Paul té: n sabem: d = q + 1 n = q - 3 $ 0,25q + $ 0,10d + $ 0,05n = $ 4,75 Podem substituir (q + 1) per d i podem substituir (q - 3) per n i resoldre q: $ 0,25q + $ 0,10 (q + 1) ) + $ 0.05 (q - 3) = $ 4.75 $ 0.25q + ($ 0.10 * q) + ($ 0.10) + (0.05 $ * q) - ($ 0.05 * 3) = $ 4.75 $ 0.25q + $ 0.10q + $ 0.10 + $ 0.05q - $ 0.15 = $ 4.75 $ 0.25q + $ 0.10q + $ 0.05q + $ 0.10 - $ 0.15 = $ 4.75 ($ 0.25 + $ 0.10 +
Zoe té un total de 16 monedes. Algunes de les seves monedes són denses i algunes són de cinc. El valor combinat dels seus nickels i dimes és de 1,35 dòlars. Quantes níqueles i dòlars té?
Zoe té 5 nickles i 11 dòlars. Primer, donem el que estem tractant de resoldre per als noms. Anomenem el nombre de nickles n i el nombre de dimes d. A partir del problema que coneixem: n + d = 16 Té 16 monedes formades per certs dòlars i alguns nickles. 0,05n + 0,1d = 1,35 El valor de les dimensions amb el valor dels nickles és de $ 1,35. A continuació, solucionem la primera equació de dn + d - n = 16 - nd = 16 - n Seguidament, substituïm 16 - n per d en la segona equació i resoldrem per n: 0,05n + 0,1 (16 - n) = 1,35 0,05n + 0,1 * 16 - 0,1n = 1,35 (0,05 - 0,1) n + 1,6 = 1,35 -0,