Resposta:
Explicació:
La fórmula dels primers 10 termes és:
Resposta:
110
(Suposant que la pregunta es refereix a una progressió aritmètica)
Explicació:
Si entenc aquest dret (la manca de notació matemàtica fa que sigui ambigua!), Aquesta és una progressió aritmètica amb el seu primer terme
La fórmula de la suma de la primera
Anem a substituir
Per tant, la resposta és 110.
Resposta:
Suma del primer
Explicació:
Donat el primer terme d’una progressió aritmètica
Aquí
=
=
=
=
El primer i el segon termes d’una seqüència geomètrica són, respectivament, el primer i el tercer termes d’una seqüència lineal. El quart terme de la seqüència lineal és 10 i la suma dels seus primers cinc termes és 60.
{16, 14, 12, 10, 8} Una seqüència geomètrica típica es pot representar com c_0a, c_0a ^ 2, cdots, c_0a ^ k i una seqüència aritmètica típica com c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Cridar c_0 a com el primer element de la seqüència geomètrica que tenim {(c_0 a ^ 2 = c_0a + 2Delta -> "El primer i el segon de GS són el primer i el tercer d’un LS"), (c_0a + 3Delta = 10- > "El quart terme de la seqüència lineal és 10"), (5c_0a + 10Delta = 60 -> "La suma dels primers cinc termes és de 60"):}
La suma dels primers quatre termes d'un metge general és de 30 i la dels quatre últims termes és de 960. Si el primer i l'últim terme del metge de capçalera és de 2 i 512, respectivament, trobeu la proporció comuna.
2root (3) 2. Suposem que la relació comuna (cr) del metge de capçalera en qüestió és r i n ^ (th) terme és l’últim terme. Atès que, el primer terme del metge de capçalera és de 2.: "El metge de capçalera és" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2r ^ (n-2), 2r ^ (n-1)}. Donat, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (estel ^ 1), i, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (estrella ^ 2). També sabem que l'últim terme és 512.:. r ^ (n-1) = 512 .................... (estrella ^ 3). Ara, (estel ^ 2) rArr r ^ (n-4)
Conèixer la fórmula a la suma dels N enters A) quina és la suma dels primers ners enters consecutius quadrats, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Suma dels primers N sers sencers consecutius Sigma_ (k = 1) ^ N k ^ 3?
Per a S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Tenim sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 resolent per a suma_ {i = 0} ^ ni ^ 2 suma {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni però sum_ {i = 0} ^ ni = ((n + 1) n) / 2 així que sum_ {i = 0} ^ ni ^ 2 =